On Asymptotic Stability of Nonlinear Stochastic Systems with Delay
-
A. Rodkina
alex@uwimona.edu.jm
Downloads
Abstract
We consider the system of stochastic differential equations with delay and with non-autonomous nonlinear main part
Here h ≥ 0, [X]tt - h (s) = X(s), when s ⋲ [t - h, t], t > h, [X]tt - h (s) = ðœ™(s), when s ⋲ [-∞, 0], ðœ™(s) is a given initial process, X= (x1, x2,..., xn)T, ui > 1 are rational numbers with odd numerators and denominators, wt is a Wiener process. For different types of delays in coefficients fi (t, [X]tt - h) and ðœŽi (t, [X]tt - h) we prove almost sure asymptotic stability of a trivial solution to the system (1) when ðœ™(s) ≡ 0.
Keywords
Similar Articles
- Shigeki Matsutani, Relations of al Functions over Subvarieties in a Hyperelliptic Jacobian , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- M.O Korpusov, A. G. Sveschnikov, On blowing-up of solutions of Sobolev-type equation with source , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Syed Abbas, Weighted pseudo almost automorphic solutions of fractional functional differential equations , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Ricardo Castro Santis, Fernando Córdova-Lepe, Ana Belén Venegas, Biorreactor de fermentación con tasa estocástica de consumo , CUBO, A Mathematical Journal: In Press
- Carl Chiarella, Ferenc Szidarovszky, Dynamic Oligopolies and Intertemporal Demand Interaction , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Gen-Qiang Wang, Sui Sun Cheng, Oscillation of second order differential equation with piecewise constant argument , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Rigoberto Medina, Asymptotic behavior of the solution of a nonlinear differential equation , CUBO, A Mathematical Journal: No. 6 (1990): CUBO, Revista de Matemática
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.