Odd Vertex Equitable Even Labeling of Cycle Related Graphs
-
P. Jeyanthi
jeyajeyanthi@rediffmail.com
-
A. Maheswari
bala_nithin@yahoo.co.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000200013Abstract
Let G be a graph with p vertices and q edges and A = {1, 3, ..., q} if q is odd or A = {1, 3, ..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V(G) → A that induces an edge labeling f∗ defined by f∗ (uv) = f(u) + f(v) for all edges uv such that for all a and b in A, |vf(a) − vf(b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where vf(a) be the number of vertices v with f(v) = a for a ∈ A. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the subdivision of double triangular snake (S(D(Tn))), subdivision of double quadrilateral snake (S(D(Qn))), DA(Qm) ⊙ nK1 and DA(Tm) ⊙ nK1 are odd vertex equitable even graphs.
Keywords
Most read articles by the same author(s)
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- P. Jeyanthi, S. Philo, Odd Harmonious Labeling of Some Classes of Graphs , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- P. Jeyanthi, K. Jeya Daisy, Andrea SemaniÄová-feňovÄíková, \(Z_k\)-magic labeling of path union of graphs , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
Similar Articles
- Ioannis Gasteratos, Spiridon Kuruklis, Thedore Kuruklis, A Trigonometrical Approach to Morley‘s Observation , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Saeid Jafari, Raja Mohammad Latif, Seithuti P. Moshokoa, A note on generalized topological spaces and preorder , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Wenchang Chu, Chenying Wang, Wenlong Zhang, Partial fractions and ð˜²-binomial determinant identities , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Fatih Nuray, Richard F. Patterson, Submatrices of four dimensional summability matrices , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.