Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales
-
Abdelouaheb Ardjouni
abd_ardjouni@yahoo.fr
-
Ahcene Djoudi
adjoudi@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300049Abstract
This paper is mainly concerned the global asymptotic stability of the zero solution of a class of nonlinear neutral dynamic equations in C1rd. By converting the nonlinear neutral dynamic equation into an equivalent integral equation, our main results are obtained via the Banach contraction mapping principle. The results obtained here extend the work of Yazgan, Tunc and Atan [17].
Keywords
M. Adıvar, Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations. Electronic Journal of Qualitative Theory of DifferentialEquations 2009, 1 (2009),1–20.
A. Ardjouni, I. Derrardjia and A. Djoudi, Stability in totally nonlinear neutral differential equations with variable delay, Acta Math. Univ. Comenianae, Vol. LXXXIII, 1 (2014), pp.119-134.
A. Ardjouni, A Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a time scale, Acta Univ. Palacki. Olomnc., Fac.rer. nat., Mathematica52, 1 (2013) 5-19.
A. Ardjouni, A Djoudi, Stability in neutral nonlinear dynamic equations on time scale with unbounded delay, Stud. Univ. Babe ̧c-Bolyai Math. 57(2012), No. 4, 481-496.
A. Ardjouni, A Djoudi, Fixed points and stability in linear neutral differential equations with variable delays, Nonlinear Analysis 74 (2011), 2062-2070.
M. Belaid, A. Ardjouni and A. Djoudi, Stability in totally nonlinear neutral dynamic equations on time scales, International Journal of Analysis and Applications,Vol. 11, Nu. 2 (2016), 110-123.
M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston, 2001.
M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii‘s theorem, Nonlinear Stud. 9 (2001), 181–190.
T. A. Burton, Stability by fixed point theory or Liapunov theory: A Comparaison, Fixed Point Theory, 4 (2003), 15-32.
T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, DoverPublications, New York, 2006.
I. Derrardjia, A. Ardjouni and A. Djoudi, Stability by Krasnoselskii‘s theorem in totally nonlinear neutral differential equations, Opuscula Math. 33(2) (2013), 255-272.
S. Hilger, Ein Maβkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. thesis, Universitat Wurzburg, Wurzburg, 1988.
E. R. Kaufmann, Y. N. Raffoul, Stability in neutral nonlinear dynamic equations on a time scale with functional delay, Dynamic Systems and Applications 16 (2007) 561-570.
G. Liu, J. Yan, Global asymptotic stability of nonlinear neutral differential equation, Commun Nonlinear Sci Numer Simulat 19 (2014) 1035-1041.
D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, no. 66, Cambridge University Press, London–New York, 1974.
R. Yazgan, C. Tunc and O. Atan, On the global asymptotic stability of solutions to neutral equations of first order, Palestine Journal of Mathematics, Vol. 6(2) (2017), 542–550.
Most read articles by the same author(s)
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Bouzid Mansouri, Abdelouaheb Ardjouni, Ahcene Djoudi, Periodicity and stability in neutral nonlinear differential equations by Krasnoselskii‘s fixed point theorem , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
Similar Articles
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Jairo Bochi, Godofredo Iommi, Mario Ponce, Perfect matchings in inhomogeneous random bipartite graphs in random environment , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Mudasir Younis, Nikola Mirkov, Ana Savić, Mirjana Pantović, Stojan Radenović, Some critical remarks on recent results concerning \(\digamma-\)contractions in \(b-\)metric spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- G. M. Sofi, W. M. Shah, A note on the structure of the zeros of a polynomial and Sendov's conjecture , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
<< < 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.











