Ball comparison between Jarratt‘s and other fourth order method for solving equations
-
Ioannis K. Argyros
iargyros@cameron.edu
-
Santhosh George
sgeorge@nitk.edu.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300065Abstract
The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt‘s fourth order method and another method of the same convergence order.
Keywords
Amat, S., Busquier, S., Plaza, S., On two families of high order Newton type methods, Appl. Math. Comput., 25, (2012), 2209-2217.
Amat, S., Argyros, I. K., Busquier, S., Hernandez, M. A., On two high-order families of frozen Newton-type methods, Numer., Lin., Alg. Appl., 25 (2018), 1-13.
Argyros, I.K., Ezquerro, J. A., Gutierrez, J. M., Hernandez, M.A., Hilout, S., On the semi-local convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math., 235,(2011), 3195-2206.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume I, Nova Publishes, NY, 2018.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume II, Nova Publishes, NY, 2018.
I.K. Argyros and S. Hilout Weaker conditions for the convergence of Newton‘s method, J.Complexity, 28, (2012), 364-387.
Argyros, I. K, Magréñan, A. A, A contemporary study of iterative methods, Elsevier (Academic Press), New York, 2018.
Argyros, I.K., Magréñan, A.A., Iterative methods and their dynamics with applications, CRC Press, New York, USA, 2017.
Cordero, A., Hueso, J. L., Martinez, E., Torregrosa, J. R., A modified Newton-Jarratt‘s composition, Numer. Algorithms, 55, (2010), 87–99.
Kantorovich, L.V., Akilov, G.P., Functional analysis in normed spaces, Pergamon Press, NewYork, 1982.
Hernandez, M. A., Martinez, E., Tervel, C., Semi-local convergence of ak−step iterative process and its application for solving a special kind of conservative problems, Numer. Algor., 76, (2017), 309-331.
Jarratt, P., Some fourth order multipoint iterative methods for solving equations, Math.Comput., 20, (1966), 434-437.
Petkovic, M.S., Neta, B., Petkovic, L., Dzunic, J., Multipoint methods for solving nonlinear equations, Elsevier, 2013.
Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ.3(1978), no. 1, 129–142.
Sharma, J.R., Guha , R. K., Sharma, R., An efficient fourth order weighted Newton method for systems of nonlinear equations, Numer. Algorithm, 62 (2013),307–323.
J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall Series in Automatic Computation, Englewood Cliffs, N. J., 1964.
Most read articles by the same author(s)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
Similar Articles
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- G. S. Saluja, Fixed point theorems on cone \(S\)-metric spaces using implicit relation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Chia-chi Tung, Pier Domenico Lamberti, On Rellich‘s Lemma, the Poincaré inequality, and Friedrichs extension of an operator on complex spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Stanislas Ouaro, Noufou Rabo, Urbain Traoré, Numerical analysis of nonlinear parabolic problems with variable exponent and \(L^1\) data , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.