Ball comparison between Jarratt‘s and other fourth order method for solving equations
-
Ioannis K. Argyros
iargyros@cameron.edu
-
Santhosh George
sgeorge@nitk.edu.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300065Abstract
The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt‘s fourth order method and another method of the same convergence order.
Keywords
Amat, S., Busquier, S., Plaza, S., On two families of high order Newton type methods, Appl. Math. Comput., 25, (2012), 2209-2217.
Amat, S., Argyros, I. K., Busquier, S., Hernandez, M. A., On two high-order families of frozen Newton-type methods, Numer., Lin., Alg. Appl., 25 (2018), 1-13.
Argyros, I.K., Ezquerro, J. A., Gutierrez, J. M., Hernandez, M.A., Hilout, S., On the semi-local convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math., 235,(2011), 3195-2206.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume I, Nova Publishes, NY, 2018.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume II, Nova Publishes, NY, 2018.
I.K. Argyros and S. Hilout Weaker conditions for the convergence of Newton‘s method, J.Complexity, 28, (2012), 364-387.
Argyros, I. K, Magréñan, A. A, A contemporary study of iterative methods, Elsevier (Academic Press), New York, 2018.
Argyros, I.K., Magréñan, A.A., Iterative methods and their dynamics with applications, CRC Press, New York, USA, 2017.
Cordero, A., Hueso, J. L., Martinez, E., Torregrosa, J. R., A modified Newton-Jarratt‘s composition, Numer. Algorithms, 55, (2010), 87–99.
Kantorovich, L.V., Akilov, G.P., Functional analysis in normed spaces, Pergamon Press, NewYork, 1982.
Hernandez, M. A., Martinez, E., Tervel, C., Semi-local convergence of ak−step iterative process and its application for solving a special kind of conservative problems, Numer. Algor., 76, (2017), 309-331.
Jarratt, P., Some fourth order multipoint iterative methods for solving equations, Math.Comput., 20, (1966), 434-437.
Petkovic, M.S., Neta, B., Petkovic, L., Dzunic, J., Multipoint methods for solving nonlinear equations, Elsevier, 2013.
Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ.3(1978), no. 1, 129–142.
Sharma, J.R., Guha , R. K., Sharma, R., An efficient fourth order weighted Newton method for systems of nonlinear equations, Numer. Algorithm, 62 (2013),307–323.
J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall Series in Automatic Computation, Englewood Cliffs, N. J., 1964.
Most read articles by the same author(s)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
Similar Articles
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Alain Escassut, Idempotents in an ultrametric Banach algebra , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Cheok Choi, Gen Nakamura, Kenji Shirota, Variational approach for identifying a coefficient of the wave equation , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.