Ball comparison between Jarratt‘s and other fourth order method for solving equations
-
Ioannis K. Argyros
iargyros@cameron.edu
-
Santhosh George
sgeorge@nitk.edu.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300065Abstract
The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt‘s fourth order method and another method of the same convergence order.
Keywords
Amat, S., Busquier, S., Plaza, S., On two families of high order Newton type methods, Appl. Math. Comput., 25, (2012), 2209-2217.
Amat, S., Argyros, I. K., Busquier, S., Hernandez, M. A., On two high-order families of frozen Newton-type methods, Numer., Lin., Alg. Appl., 25 (2018), 1-13.
Argyros, I.K., Ezquerro, J. A., Gutierrez, J. M., Hernandez, M.A., Hilout, S., On the semi-local convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math., 235,(2011), 3195-2206.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume I, Nova Publishes, NY, 2018.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume II, Nova Publishes, NY, 2018.
I.K. Argyros and S. Hilout Weaker conditions for the convergence of Newton‘s method, J.Complexity, 28, (2012), 364-387.
Argyros, I. K, Magréñan, A. A, A contemporary study of iterative methods, Elsevier (Academic Press), New York, 2018.
Argyros, I.K., Magréñan, A.A., Iterative methods and their dynamics with applications, CRC Press, New York, USA, 2017.
Cordero, A., Hueso, J. L., Martinez, E., Torregrosa, J. R., A modified Newton-Jarratt‘s composition, Numer. Algorithms, 55, (2010), 87–99.
Kantorovich, L.V., Akilov, G.P., Functional analysis in normed spaces, Pergamon Press, NewYork, 1982.
Hernandez, M. A., Martinez, E., Tervel, C., Semi-local convergence of ak−step iterative process and its application for solving a special kind of conservative problems, Numer. Algor., 76, (2017), 309-331.
Jarratt, P., Some fourth order multipoint iterative methods for solving equations, Math.Comput., 20, (1966), 434-437.
Petkovic, M.S., Neta, B., Petkovic, L., Dzunic, J., Multipoint methods for solving nonlinear equations, Elsevier, 2013.
Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ.3(1978), no. 1, 129–142.
Sharma, J.R., Guha , R. K., Sharma, R., An efficient fourth order weighted Newton method for systems of nonlinear equations, Numer. Algorithm, 62 (2013),307–323.
J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall Series in Automatic Computation, Englewood Cliffs, N. J., 1964.
Most read articles by the same author(s)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
Similar Articles
- Tomonari Suzuki, Browder Convergence and Mosco Convergence for Families of Nonexpansive Mappings , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- D. Ebrahimi Bagha, M. Amini, Module amenability for Banach modules , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Yasuyuki Oka, On the Weyl transform with symbol in the Gel‘fand-Shilov space and its dual space , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Fethi Soltani, Extremal functions and best approximate formulas for the Hankel-type Fock space , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











