Ball comparison between Jarratt‘s and other fourth order method for solving equations
-
Ioannis K. Argyros
iargyros@cameron.edu
-
Santhosh George
sgeorge@nitk.edu.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300065Abstract
The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt‘s fourth order method and another method of the same convergence order.
Keywords
Amat, S., Busquier, S., Plaza, S., On two families of high order Newton type methods, Appl. Math. Comput., 25, (2012), 2209-2217.
Amat, S., Argyros, I. K., Busquier, S., Hernandez, M. A., On two high-order families of frozen Newton-type methods, Numer., Lin., Alg. Appl., 25 (2018), 1-13.
Argyros, I.K., Ezquerro, J. A., Gutierrez, J. M., Hernandez, M.A., Hilout, S., On the semi-local convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math., 235,(2011), 3195-2206.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume I, Nova Publishes, NY, 2018.
Argyros, I. K., George, S., Thapa, N., Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume II, Nova Publishes, NY, 2018.
I.K. Argyros and S. Hilout Weaker conditions for the convergence of Newton‘s method, J.Complexity, 28, (2012), 364-387.
Argyros, I. K, Magréñan, A. A, A contemporary study of iterative methods, Elsevier (Academic Press), New York, 2018.
Argyros, I.K., Magréñan, A.A., Iterative methods and their dynamics with applications, CRC Press, New York, USA, 2017.
Cordero, A., Hueso, J. L., Martinez, E., Torregrosa, J. R., A modified Newton-Jarratt‘s composition, Numer. Algorithms, 55, (2010), 87–99.
Kantorovich, L.V., Akilov, G.P., Functional analysis in normed spaces, Pergamon Press, NewYork, 1982.
Hernandez, M. A., Martinez, E., Tervel, C., Semi-local convergence of ak−step iterative process and its application for solving a special kind of conservative problems, Numer. Algor., 76, (2017), 309-331.
Jarratt, P., Some fourth order multipoint iterative methods for solving equations, Math.Comput., 20, (1966), 434-437.
Petkovic, M.S., Neta, B., Petkovic, L., Dzunic, J., Multipoint methods for solving nonlinear equations, Elsevier, 2013.
Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ.3(1978), no. 1, 129–142.
Sharma, J.R., Guha , R. K., Sharma, R., An efficient fourth order weighted Newton method for systems of nonlinear equations, Numer. Algorithm, 62 (2013),307–323.
J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall Series in Automatic Computation, Englewood Cliffs, N. J., 1964.
Most read articles by the same author(s)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
Similar Articles
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Jito Vanualailai, Bibhya Sharma, Moving a Robot Arm: An interesting application of the Direct method of Lyapunov , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Mahmoud Benkhalifa, Note on the \(F_{0}\)-spaces , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- M. Lellis Thivagar, S. Athisaya Ponmani, R. Raja Rajeswari, Erdal Ekici, On Some Bitopological ð›¾-Separation Axioms , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.










