The basic ergodic theorems, yet again
-
Jairo Bochi
jairo.bochi@mat.uc.cl
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300081Abstract
A generalization of Rokhlin‘s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac‘s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen.
In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman.
Keywords
Avila, A.; Bochi, J.–On the subadditive ergodic theorem. Manuscript, 2009.www.mat.uc.cl/ ̃jairo.bochi/docs/kingbirk.pdf
Birkhoff, G.D.– Proof of the ergodic theorem.Proc. Nat. Acad. Sci. USA, 17 (1931),656–660.
Heinemann, S.-M.; Schmitt, O.– Rokhlin‘s lemma for non-invertible maps. Dynam. Systems Appl. 10 (2001), no. 2, 201–213.
Jones, R.L.– New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem. Proc. Amer. Math. Soc.87 (1983), no. 4, 681–684.
Karlsson, A.– A proof of the subadditive ergodic theorem. Groups, graphs and random walks, 343–354, London Math. Soc. Lecture Note Ser., 436, CambridgeUniv. Press, Cambridge, 2017.
Karlsson, A.; Margulis, G.– A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys.208 (1999), no. 1, 107–123.
Katok, A.; Hasselblatt, B.–Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge Univ. Press, Cambridge, 1995.
Katznelson, Y.; Weiss, B.– A simple proof of some ergodic theorems.Israel J. Math.42 (1982), no. 4, 291–296.
Keane, M.; Petersen, K.– Easy and nearly simultaneous proofs of the ergodic theorem and maximal ergodic theorem. Dynamics & stochastics, 248–251. IMS Lecture Notes Monogr. Ser., 48. Inst. Math. Statist., Beachwood, OH, 2006.
Kingman, J.F.C.– The ergodic theory of subadditive stochastic processes.J. Roy. Statist.Soc. Ser. B, 30 (1968), 499–510.
Knill, O.– The upper Lyapunov exponent of SL(2,R) cocycles: discontinuity and the problem of positivity. Lyapunov exponents (Oberwolfach, 1990), 86–97, Lecture Notes inMath., 1486, Springer, Berlin, 1991.
Kornfeld, I.– Some old and new Rokhlin towers.Chapel Hill Ergodic Theory Workshops,145–169, Contemp. Math., 356, Amer. Math. Soc., Providence, RI, 2004.
Krengel, U.–Ergodic theorems. De Gruyter Studies in Mathematics, 6. Walter de Gruyter& Co., Berlin, 1985.
Lessa, P.–Teoremas ergódicos en espacios hiperbólicos. Master‘s thesis, Universidad de la República, Montevideo (2009). www.cmat.edu.uy/ ̃lessa/masters.html
Morris, I.D.– Mather sets for sequences of matrices and applications to the study of joint spectral radii. Proc. Lond. Math. Soc.107 (2013), no. 1, 121–150.
Petersen, K.–Ergodic theory. Corrected reprint of the 1983 original. Cambridge Studies in Advanced Mathematics, 2. Cambridge Univ. Press, Cambridge, 1989.
Quas, A.– mathoverflow.net/q/279635
Ralston, D.– Heaviness: an extension of a lemma of Y. Peres. Houston J. Math.35 (2009),no. 4, 1131–1141.
Rokhlin, V.– A “general” measure-preserving transformation is not mixing. (Russian) Doklady Akad. Nauk SSSR60, (1948), 349–351.
Silva, C.E.; Thieullen, P.– The subadditive ergodic theorem and recurrence properties of Markovian transformations.J. Math. Anal. Appl. 154 (1991), no. 1, 83–99.
Steele, J.M.– Explaining a mysterious maximal inequality – and a path to the law of large numbers. Amer. Math. Monthly122 (2015), no. 5, 490–494.
Weiss, B.– On the work of V. A. Rokhlin in ergodic theory.Ergodic Theory Dynam. Systems9 (1989), no. 4, 619–627.
Wojtkowski, M.– Invariant families of cones and Lyapunov exponents.Ergodic Theory Dynam. Systems5 (1985), no. 1, 145–161.
Most read articles by the same author(s)
- Jairo Bochi, Godofredo Iommi, Mario Ponce, Perfect matchings in inhomogeneous random bipartite graphs in random environment , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
Similar Articles
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Fabrice Jaillet, Xavier Vidaux, A note on Buell’s Theorem on length four Büchi sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Adusei-Poku Afful, Ernest Yankson, Agnes Adom-Konadu, Existence and stability of solutions of totally nonlinear neutral Caputo q-fractional difference equations , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Abdelkader Abouricha, Lamya Bouali, Allal Ghanmi, Characterization of bc and strongly bc-polyharmonic functions , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Seppo Heikkila, Fixed Point Results for Set-Valued and Single-Valued Mappings in Ordered Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Balwant Singh Thakur, An iterative method for finite family of hemi contractions in Hilbert space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Jan Andres, Karel Pastor, Pavla Snyrychov´a, Simple Fixed Point Theorems on Linear Continua , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Sunny Chauhan, B. D. Pant, Mohammad Imdad, Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.










