The basic ergodic theorems, yet again
-
Jairo Bochi
jairo.bochi@mat.uc.cl
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300081Abstract
A generalization of Rokhlin‘s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac‘s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen.
In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman.
Keywords
Avila, A.; Bochi, J.–On the subadditive ergodic theorem. Manuscript, 2009.www.mat.uc.cl/ ̃jairo.bochi/docs/kingbirk.pdf
Birkhoff, G.D.– Proof of the ergodic theorem.Proc. Nat. Acad. Sci. USA, 17 (1931),656–660.
Heinemann, S.-M.; Schmitt, O.– Rokhlin‘s lemma for non-invertible maps. Dynam. Systems Appl. 10 (2001), no. 2, 201–213.
Jones, R.L.– New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem. Proc. Amer. Math. Soc.87 (1983), no. 4, 681–684.
Karlsson, A.– A proof of the subadditive ergodic theorem. Groups, graphs and random walks, 343–354, London Math. Soc. Lecture Note Ser., 436, CambridgeUniv. Press, Cambridge, 2017.
Karlsson, A.; Margulis, G.– A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys.208 (1999), no. 1, 107–123.
Katok, A.; Hasselblatt, B.–Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge Univ. Press, Cambridge, 1995.
Katznelson, Y.; Weiss, B.– A simple proof of some ergodic theorems.Israel J. Math.42 (1982), no. 4, 291–296.
Keane, M.; Petersen, K.– Easy and nearly simultaneous proofs of the ergodic theorem and maximal ergodic theorem. Dynamics & stochastics, 248–251. IMS Lecture Notes Monogr. Ser., 48. Inst. Math. Statist., Beachwood, OH, 2006.
Kingman, J.F.C.– The ergodic theory of subadditive stochastic processes.J. Roy. Statist.Soc. Ser. B, 30 (1968), 499–510.
Knill, O.– The upper Lyapunov exponent of SL(2,R) cocycles: discontinuity and the problem of positivity. Lyapunov exponents (Oberwolfach, 1990), 86–97, Lecture Notes inMath., 1486, Springer, Berlin, 1991.
Kornfeld, I.– Some old and new Rokhlin towers.Chapel Hill Ergodic Theory Workshops,145–169, Contemp. Math., 356, Amer. Math. Soc., Providence, RI, 2004.
Krengel, U.–Ergodic theorems. De Gruyter Studies in Mathematics, 6. Walter de Gruyter& Co., Berlin, 1985.
Lessa, P.–Teoremas ergódicos en espacios hiperbólicos. Master‘s thesis, Universidad de la República, Montevideo (2009). www.cmat.edu.uy/ ̃lessa/masters.html
Morris, I.D.– Mather sets for sequences of matrices and applications to the study of joint spectral radii. Proc. Lond. Math. Soc.107 (2013), no. 1, 121–150.
Petersen, K.–Ergodic theory. Corrected reprint of the 1983 original. Cambridge Studies in Advanced Mathematics, 2. Cambridge Univ. Press, Cambridge, 1989.
Quas, A.– mathoverflow.net/q/279635
Ralston, D.– Heaviness: an extension of a lemma of Y. Peres. Houston J. Math.35 (2009),no. 4, 1131–1141.
Rokhlin, V.– A “general” measure-preserving transformation is not mixing. (Russian) Doklady Akad. Nauk SSSR60, (1948), 349–351.
Silva, C.E.; Thieullen, P.– The subadditive ergodic theorem and recurrence properties of Markovian transformations.J. Math. Anal. Appl. 154 (1991), no. 1, 83–99.
Steele, J.M.– Explaining a mysterious maximal inequality – and a path to the law of large numbers. Amer. Math. Monthly122 (2015), no. 5, 490–494.
Weiss, B.– On the work of V. A. Rokhlin in ergodic theory.Ergodic Theory Dynam. Systems9 (1989), no. 4, 619–627.
Wojtkowski, M.– Invariant families of cones and Lyapunov exponents.Ergodic Theory Dynam. Systems5 (1985), no. 1, 145–161.
Most read articles by the same author(s)
- Jairo Bochi, Godofredo Iommi, Mario Ponce, Perfect matchings in inhomogeneous random bipartite graphs in random environment , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
Similar Articles
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Iris A. López, On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- S. Minkevicius, About cumulative idle time model of the message switching system , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Abdellatif Moudafi, Computing the resolvent of composite operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Junwei Liu, Chuanyi Zhang, Existence and stability of almost periodic solutions to impulsive stochastic differential equations , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Toufik Moussaoui, Radu Precup, Positive Solutions for Elliptic Boundary Value Problems with a Harnack-Like Property , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Martin V¨ath, A Disc-Cutting Theorem and Two-Dimensional Bifurcation of a Reaction-Diffusion System with Inclusions , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Yuqun Chen, Hongshan Shao, K.P. Shum, Rosso-Yamane Theorem on PBW Basis of ð‘ˆÔ›(ð´É´) , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- A. Aghajani, D. O'Regan, A. Shole Haghighi, Measure of noncompactness on Lp(RN) and applications , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.