Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds
-
G. Divyashree
gdivyashree9@gmail.com
-
Venkatesha
vensmath@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000100071Abstract
The paper presents a study of \( (\kappa,\mu) \)-contact metric manifolds satisfying certain conditions on the conharmonic curvature tensor.
Keywords
Blair D. E, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29, pp. 319-324, 1977.
D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 19, pp. 189-214, 1995.
E. Boeckx, A full classification of contact metric (κ, μ)-spaces, Illinois J. of Math. 44, pp. 212-219, 2000.
A. Ghosh, R. Sharma and J.T. Cho, Contact metric manifolds with η-parallel torsion tensor, Ann. Glob. Anal Geom. 34, pp. 287-299, 2008.
Jun J. B. Yildiz A. and De U. C, On φ-recurrent (κ, μ)contact metric manifolds, Bull. Korean Math. Soc. 45, pp. 689-700, 2008.
Nader Asghari and Abolfazl Taleshian, On the Conharmonic curvature tensor of Kenmotsu manifolds, Thai Journal of Mathematics, 12(3), pp. 525-536, 2014.
C. Özgür, On φ-conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki, 12(1), pp. 99-106, 2003.
D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42, pp. 243-258, 1998.
A. Sarkar, Matilal Sen and Ali Akbar, Generalized Sasakian space forms with conharmonic curvature tensor, Palestine Journal of Mathematics, 4(1), pp. 84-90, 2015.
A. A. Shaikh and K. Kanti Baishya, On (κ, μ)-contact metric manifolds, Differential Geometry Dynamical Systems, 8, pp. 253-261, 2006.
S. A. Siddiqui and Z. Ahsan, Conharmonic curvature tensor and the space-time of general relativity, Differential Geometry-Dynamical Systems, 12, pp. 213-220, 2010.
A. Yildiz and U. C. De, A classification of (κ, μ)-contact metric manifolds, Commun. Korean Math. Soc., 2, pp. 327-339, 2012.
Most read articles by the same author(s)
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Venkatesha, Divyashree G., Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
Similar Articles
- Mihai Prunescu, Concrete algebraic cohomology for the group (â„, +) or how to solve the functional equation ð‘“(ð‘¥+ð‘¦) - ð‘“(ð‘¥) - ð‘“(ð‘¦) = ð‘”(ð‘¥, ð‘¦) , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Manoj Bhardwaj, Alexander V. Osipov, Some observations on a clopen version of the Rothberger property , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Peter Topalov, Geodesically compatible metrics. Existence of commutative conservation laws , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.