Level sets regularization with application to optimization problems
-
Moussa Barro
mousbarro@yahoo.fr
-
Sado Traoré
traore.sado@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000100137Abstract
Given a coupling function \(c\) and a non empty subset of â„, we define a closure operator. We are interested in extended real-valued functions whose sub-level sets are closed for this operator. Since this class of functions is closed under pointwise suprema, we introduce a regularization for extended real-valued functions. By decomposition of the closure operator using polarity scheme, we recover the regularization by bi-conjugation. We apply our results to derive a strong duality for a minimization problem.
Keywords
Crouzeix, J-P.: Contributions à ` l‘étude des fonctions quasiconvexes. Thesis. University of Clermont-Ferrand, France (1977).
Dolecki, S. and Kurcyusz, S.: On Φ-convexity in extremal problems. SIAM J. Control Optim. 16, 277–300 (1978).
Elias, L. M. and Martínez-Legaz, J.E.: A simplified conjugation scheme for lower semi-continuous functions. Optimization, 65(4):751–763 (2016).
Fenchel, W.: A remark on convex sets and polarity. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 82–89 (1952).
Flores-Bazán, F.: On a notion of subdifferentiability for non-convex functions. Optimization, 33(1):1–8 (1995).
Guillaume, S. and Volle, M.: Level set relaxation, epigraphical relaxation and conditioning in optimization. Positivity, 19:769–795 (2015).
Martínez-Legaz, J.: Generalized Convex Duality and its Economic Applications. Non-convex Optimization and Its Application, Handbook of generalized convexity and generalized mono- tonicity. Springer, New York, (2005).
Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl., 49: pp. 109–154 (1970).
Penot, J.P.: What is quasiconvex analysis? Optimization, 47: pp. 35–110, (2000).
Penot, J.P.: Conjugacies adapted to lower semicontinuous functions. Optimization, 64(3): pp. 473– 494 (2015).
Penot, J.P. and Volle, M.: On quasi-convex duality. Math. Oper. Res, 15: pp. 4597–625, (1990).
Penot, J.P. and Volle,M.: Surrogate programming and multipliers in quasi-convex programming. SIAM J. Control Optim, 42(6): pp. 1994–2003, (2004).
Rockafellar, R.T.: Conjugate Duality and optimization, SIAM (1974).
Rubinov, A.: Abstract Convexity and Global Optimization. Non-convex Optimization and Its Application. Springer US, (2000).
Singer, I.: Abstract convex analysis. Canadian Mathematics Series of Monographs and Texts. A wiley Interscience,(1997).
Volle, M.: Conjugaison par tranches. Annali di Matematica pura ed applicata, CXXXIX(IV): pp. 279–312, (1985).
Volle, M.: Conjugaison par tranche et dualit Ìe de toland. Optimization, 18(5): pp. 633–642 (1987).
Most read articles by the same author(s)
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
Similar Articles
- Michael Drmota, Combinatorics and Asymptotics on Trees , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Branko Malešević, Dimitrije Jovanović, Frame’s Types of Inequalities and Stratification , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- S. Haq, K.S. Nisar, A.H. Khan, D.L. Suthar, Certain integral Transforms of the generalized Lommel-Wright function , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- B. K. Tyagi, Harsh V. S. Chauhan, On generalized closed sets in generalized topological spaces , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Radu Miron, Lagrange and Hamilton Spaces: Geometrical Models in Mechanics, new Theoretical Physics, Variational Calculus and Optimal Control , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.