Foundations of generalized Prabhakar-Hilfer fractional calculus with applications
-
George A. Anastassiou
ganastss@memphis.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300423Abstract
Here we introduce the generalized Prabhakar fractional calculus and we also combine it with the generalized Hilfer calculus. We prove that the generalized left and right side Prabhakar fractional integrals preserve continuity and we find tight upper bounds for them. We present several left and right side generalized Prabhakar fractional inequalities of Hardy, Opial and Hilbert-Pachpatte types. We apply these in the setting of generalized Hilfer calculus.
Keywords
G. A. Anastassiou, Fractional differentiation inequalities, New York: Springer-Verlag, 2009.
G. A. Anastassiou, Intelligent Computations: abstract fractional calculus inequalities, approximations, Cham: Springer, 2018.
A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio and F. Mainardi, “A practical guide to Prabhakar fractional calculus”, Fract. Calc. Appl. Anal., vol. 23, no. 1, pp. 9–54, 2020.
R. Gorenflo, A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Leffler functions, related topics and applications, Heidelberg: Springer, 2014.
E. Hewith and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, New York: Springer, 1965.
F. Polito and Ž. Tomovski, “Some properties of Prabhakar-type fractional calculus operators”, Fract. Differ. Calc., vol. 6, no. 1, pp. 73–94, 2016.
T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., vol. 19, pp. 7–15, 1971.
J. Vanterler da C. Sousa, E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul., vol. 60, pp. 72–91, 2018.
Most read articles by the same author(s)
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- George A. Anastassiou, Spline left fractional monotone approximation involving left fractional differential operators , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, Caputo fractional Iyengar type Inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
Similar Articles
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- A. Bultheel, H. Mart´Ä±nez, An introduction to the Fractional Fourier Transform and friends , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- George A. Anastassiou, Univariate right fractional Ostrowski inequalities , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.