Foundations of generalized Prabhakar-Hilfer fractional calculus with applications
-
George A. Anastassiou
ganastss@memphis.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300423Abstract
Here we introduce the generalized Prabhakar fractional calculus and we also combine it with the generalized Hilfer calculus. We prove that the generalized left and right side Prabhakar fractional integrals preserve continuity and we find tight upper bounds for them. We present several left and right side generalized Prabhakar fractional inequalities of Hardy, Opial and Hilbert-Pachpatte types. We apply these in the setting of generalized Hilfer calculus.
Keywords
G. A. Anastassiou, Fractional differentiation inequalities, New York: Springer-Verlag, 2009.
G. A. Anastassiou, Intelligent Computations: abstract fractional calculus inequalities, approximations, Cham: Springer, 2018.
A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio and F. Mainardi, “A practical guide to Prabhakar fractional calculus”, Fract. Calc. Appl. Anal., vol. 23, no. 1, pp. 9–54, 2020.
R. Gorenflo, A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Leffler functions, related topics and applications, Heidelberg: Springer, 2014.
E. Hewith and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, New York: Springer, 1965.
F. Polito and Ž. Tomovski, “Some properties of Prabhakar-type fractional calculus operators”, Fract. Differ. Calc., vol. 6, no. 1, pp. 73–94, 2016.
T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., vol. 19, pp. 7–15, 1971.
J. Vanterler da C. Sousa, E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul., vol. 60, pp. 72–91, 2018.
Most read articles by the same author(s)
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- George A. Anastassiou, Spline left fractional monotone approximation involving left fractional differential operators , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, Caputo fractional Iyengar type Inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
Similar Articles
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- M. H. Saleh, S. M. Amer, M. A. Mohamed, N. S. Abdelrhman, Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Syed Abbas, Weighted pseudo almost automorphic solutions of fractional functional differential equations , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Djalal Boucenna, Abdellatif Ben Makhlouf, Mohamed Ali Hammami, On Katugampola fractional order derivatives and Darboux problem for differential equations , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.