The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities
-
Hasnae El Hammar
hasnaeelhammar11@gmail.com
-
Chakir Allalou
chakir.allalou@yahoo.fr
-
Adil Abbassi
abbassi91@yahoo.fr
-
Abderrazak Kassidi
abderrazakassidi@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100063Abstract
In this article, we use the topological degree based on the abstract Hammerstein equation to investigate the existence of weak solutions for a class of elliptic Dirichlet boundary value problems involving the fractional \(p(x)\)-Laplacian operator with discontinuous nonlinearities. The appropriate functional framework for this problems is the fractional Sobolev space with variable exponent.
Keywords
A. Abbassi, C. Allalou and A. Kassidi, “Existence of weak solutions for nonlinear p-elliptic problem by topological degree”, Nonlinear Dyn. Syst. Theory, vol. 20, no. 3, pp. 229–241, 2020.
A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. of Pure and Appl. Anal. (MJPAA), vol. 6, no. 2, pp. 231–242, 2020.
C. Allalou, A. Abbassi and A. Kassidi, “The discontinuous nonlinear Dirichlet boundary value problem with p-Laplacian”, Azerb. J. Math., vol. 11, no. 2, pp. 60–77, 2021.
A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications‘”, J. Functional Analysis, vol. 14, no. 4, pp. 349–381, 1973.
D. Arcoya and M. Calahorrano, “Some discontinuous problems with a quasilinear operator”, J. Math. Anal. Appl., vol. 187, no. 3, pp. 1059–1072, 1994.
G. Autuori and P. Pucci, “Elliptic problems involving the fractional Laplacian in R^N”, J. Differential Equations, vol. 255, no. 8, pp. 2340–2362, 2013.
E. Azroul, A. Benkirane and M. Shimi, “Eigenvalue problems involving the fractional p(x)- Laplacian operator”, Adv. Oper. Theory, vol. 4, no. 2, pp. 539–555, 2019.
A. Bahrouni and V. D. R ̆adulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent”, Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379–389, 2018.
A. Bahrouni, V. D. Rădulescu and P. Winkert, “Robin fractional problems with symmetric variable growth”, J. Math. Phys., vol. 61, no. 10, 101503, 14 pages, 2020.
A. Bahrouni and K. Ho, “Remarks on eigenvalue problems for fractional p(·)-Laplacian”, Asymptot. Anal., vol. 123, no. 1–2, pp. 139–156, 2021.
G. Barletta, A. Chinnì and D. O‘Regan, “Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities”, Nonlinear Anal. Real World Appl., vol. 27, pp. 312–325, 2016.
J. Berkovits and M. Tienari, “Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems involving discontinuous nonlinearities”, Dynam. Systems Appl., vol. 5, no. 1, pp. 1–18, 1996.
H. Brezis and E. H. Lieb, “A relation between pointwise convergence of functions and convergence of functionals”, Proc. Amer. Math. Soc., vol. 88, no. 3, pp. 486–490, 1983.
F. E. Browder, “Fixed point theory and nonlinear problems”, Bull. Amer. Math. Soc. (N.S.), vol. 9, no. 1, pp. 1–39, 1983.
X. Cabré and Y. Sire, “Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates”, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 31, no. 1, pp. 23–53, 2014.
K. C. Chang, “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., vol. 33, no. 2, pp. 117–146, 1980.
Y. Chen, S. Levine and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., vol. 66, no. 4, pp. 1383–1406, 2006.
D. O‘Regan, Y. J. Cho and Y.-Q. Chen, Topological degree theory and applications, Series in Mathematical Analysis and Applications, 10, Boca Raton: Chapman & Hall/CRC, 2006.
E. B. Choi, J.-M. Kim and Y.-H. Kim, “Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition”, Proc. Roy. Soc. Edinburgh Sect. A, vol. 148, no. 1, pp. 1–31, 2018.
L. Diening, P. Harjulehto, P. Hästö and M. RůžiÄka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Heidelberg: Springer, 2011.
G. G. dos Santos, G. M. Figueiredo and R. G. Nascimento, “Existence and behavior of positive solution for a problem with discontinuous nonlinearity in R^N via a nonsmooth penalization”, Z. Angew. Math. Phys., vol. 71, no. 2, Paper No. 71, 18 pages, 2020.
X. Fan and D. Zhao, “On the spaces L^p(x)(Ω) and W^m,p(x)(Ω)”, J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001.
M. Ait Hammou, E. Azroul and B. Lahmi, “Topological degree methods for a strongly nonlinear p(x)-elliptic problem”, Rev. Colombiana Mat., vol. 53, no. 1, pp. 27–39, 2019.
S. Heidarkhani and F. Gharehgazlouei, “Multiplicity of elliptic equations involving the p-Laplacian with discontinuous nonlinearities”, Complex Var. Elliptic Equ., vol. 62, no. 3, pp. 413–429, 2017.
K. Ho and Y.-H. Kim, “A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(·)-Laplacian”, Nonlinear Anal., vol. 188, pp. 179–201, 2019.
U. Kaufmann, J. D. Rossi and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians”, Electron. J. Qual. Theory Differ. Equ., Paper no. 76, 10 pages, 2017.
I. H. Kim and Y.-H. Kim, “Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents”, Manuscripta Math., vol. 147, no. 1-2, pp. 169–191, 2015.
I. H. Kim, J.-H. Bae and Y.-H. Kim, “Existence of a weak solution for discontinuous elliptic problems involving the fractional p(·)-Laplacian”, J. Nonlinear Convex Anal., vol. 21, no. 1, pp. 89–103, 2020.
I.-S. Kim, “Topological degree and applications to elliptic problems with discontinuous non-linearity”, J. Nonlinear Sci. Appl., vol. 10, no. 2, pp. 612–624, 2017.
O. KováÄik and J. Rákosník, “On spaces L^p(x) and W^k,p(x)”, Czechoslovak Math. J., vol. 41 (116), no. 4, pp. 592–618, 1991.
J. Leray and J. Schauder, “Topologie et équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), vol. 51, pp. 45–78, 1934.
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Dunod; Gauthier-Villars, 1969.
R. Metzler and J. Klafter, “The random walk‘s guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., vol. 339, no. 1, 77 pages, 2000.
E. Di Nezza, G. Palatucci and E. Valdinoci, “Hitchhiker‘s guide to the fractional Sobolev spaces”, Bull. Sci. Math., vol. 136, no. 5, pp. 521–573, 2012.
R. Servadei and E. Valdinoci, “Mountain pass solutions for non-local elliptic operators”, J. Math. Anal. Appl, vol. 389, no. 2, pp. 887–898, 2012.
J. Simon, “Régularité de la solution d‘une équation non linéaire dans R^N ”, Journées d‘Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205–227, Lecture Notes in Math., 665, Berlin: Springer, 1978.
I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Translations of Mathematical Monographs, 139, Providence, Rhode Island: American Mathematical Society, 1994.
I. V. Skrypnik, “Nonlinear elliptic equations of higher order”, (Russian) Gamoqeneb. Math. Inst. Sem. Mohsen. Anotacie., no. 7, pp. 51–52, 1973.
K. Teng and X. Wu, “Multiplicity results for semilinear resonant elliptic problems with discontinuous nonlinearities”, Nonlinear Anal., vol. 68, no. 6, pp. 1652–1667, 2008.
K. Teng, “Multiple solutions for semilinear resonant elliptic problems with discontinuous nonlinearities via nonsmooth double linking theorem‘”, J. Global Optim., vol. 46, no. 1, pp. 89–110, 2010.
C. Wang and Y. Huang, “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., vol. 72, no. 11, pp. 4076–4081, 2010.
Z. Yuan and J. Yu, “Existence of solutions for Dirichlet elliptic problems with discontinuous nonlinearity”, Nonlinear Anal., vol. 197, 111848, 17 pages, 2020.
C. Zhang and X. Zhang, “Renormalized solutions for the fractional p(x)-Laplacian equation with L^1 data”, Nonlinear Anal., vol. 190, 111610, 15 pages, 2020.
D. Zhao, W. J. Qiang and X. L. Fan, “On generalized Orlicz spaces L^p(x)(Ω)”, J. Gansu Sci., vol. 9, no. 2, pp. 1–7, 1997.
E. Zeidler, Nonlinear functional analysis and its applications II/B, nonlinear monotone operators, New York: Springer, 1990.
Most read articles by the same author(s)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
Similar Articles
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Vediyappan Govindan, Choonkil Park, Sandra Pinelas, Themistocles M. Rassias, Hyers-Ulam stability of an additive-quadratic functional equation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- K. Kalyani, N. Seshagiri Rao, Coincidence point results of nonlinear contractive mappings in partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Chia-chi Tung, Pier Domenico Lamberti, On Rellich‘s Lemma, the Poincaré inequality, and Friedrichs extension of an operator on complex spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- M. Haviar, S. Kurtulík, A new class of graceful graphs: \(k\)-enriched fan graphs and their characterisations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.











