A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\)
-
Edoardo Ballico
edoardo.ballico@unitn.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100095Abstract
Let \(q\) be an odd prime power. We discuss possible definitions over \(\mathbb F_{q^2}\) (using the Hermitian form) of circles, unit segments and half-lines. If we use our unit segments to define the convex hulls of a set \(S\subset \mathbb F_{q^2}^n\) for \(q\notin \{3,5,9\}\) we just get the \(\mathbb F_q\)-affine span of \(S\).
Keywords
E. Ballico, “On the numerical range of matrices over a finite field”, Linear Algebra Appl., vol. 512, pp. 162–171, 2017.
E. Ballico, Corrigendum to “On the numerical range of matrices over a finite field” [Linear Algebra Appl., vol. 512, pp. 162–171, 2017], Linear Algebra Appl., vol. 556, pp. 421–427, 2018.
E. Ballico, “The Hermitian null-range of a matrix over a finite field”, Electron. J. Linear Algebra, vol. 34, pp. 205–216, 2018.
E. Ballico, “A numerical range characterization of unitary matrices over a finite field”, Asian-European Journal of Mathematics (AEJM) (to appear). doi: 10.1142/S1793557122500498
F. F. Bonsall and J. Duncan, Numerical ranges II, London Mathematical Society Lecture Note Series, no. 10, New York-London: Cambridge University Press, 1973.
K. Camenga, B. Collins, G. Hoefer, J. Quezada, P. X. Rault, J. Willson and R. J. Yates, “On the geometry of numerical ranges over finite fields”, Linear Algebra Appl., vol. 628, pp. 182–201, 2021.
Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, “A definition of numerical range of rectangular matrices”, Linear Multilinear Algebra, vol. 57, no. 5, pp. 459–475, 2009.
J. I. Coons, J. Jenkins, D. Knowles, R. A. Luke and P. X. Rault, “Numerical ranges over finite fields”, Linear Algebra Appl., vol. 501, pp. 37–47, 2016.
K. E. Gustafson and D. K. M. Rao, Numerical range, Universitext, New York: Springer-Verlag, 1997.
J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1979.
J. W. P. Hirschfeld and J. A. Thas, General Galois geometries, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1991.
R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 1985.
R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991.
L. Jin, “Quantum stabilizer codes from maximal curves”, IEEE Trans. Inform. Theory, vol. 60, no. 1, pp. 313–316, 2014.
K. Ireland and M. Rosen, A classical introduction to modern number theory, Second Edition, Graduate Texts in Mathematics, 84, New York: Springer-Verlag, 1990.
R. Ke, W. Li and M. K. Ng, “Numerical ranges of tensors”, Linear Algebra Appl., vol. 508, pp. 100–132, 2016.
J.-L. Kim and G. L. Matthews, “Quantum error-correcting codes from algebraic curves”, in Advances in algebraic geometry codes, Ser. Coding Theory Cryptol., vol. 5, Hackensack, NJ: World Sci. Publ., 2008, pp. 419–444.
R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, 20, Cambridge: Cambridge University Press, 1997.
R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge: Cambridge University Press, 1994.
C. Munuera, W. Tenório and F. Torres, “Quantum error-correcting codes from algebraic geometry codes of Castle type”, Quantum Inf. Process., vol. 15, no. 10, pp. 4071–4088, 2016.
P. J. Psarrakos and M. J. Tsatsomeros, “Numerical range: (in) a matrix nutshell”, National Technical University, Athens, Greece, Notes, 2004.
C. Small, Arithmetic of finite fields, Monographs and Textbooks in Pure and Applied, 148, New York: Marcel Dekker, Inc., 1991.
Most read articles by the same author(s)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
Similar Articles
- Paul M. Cohn, The Weyl algebra and its field of fractions , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Pedro Ferreira de Lima, Andr´e Toom, Dualities Useful in Bond Percolation , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Sébastien Breteaux, Higher order terms for the quantum evolution of a Wick observable within the Hepp method , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Xiao-Chuan Cai, Maksymilian Dryja, Marcus Sarkis, A Restricted Additive Schwarz Preconditioner with Harmonic Overlap for Symmetric Positive Definite Linear Systems , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Fortune Massamba, Lightlike geometry of leaves in indefinite Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- B. Khosravi, M. Khatami, Z. Akhlaghi, Some new characterizations for PGL(2, q) , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Gurucharan Singh Saluja, Hemant Kumar Nashine, Strong convergence of an implicit iteration process for a finite family of strictly asymptotically pseudocontractive mappings , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.