On the minimum ergodic average and minimal systems
-
Manuel Saavedra
saavmath@pg.im.ufrj.br
-
Helmuth Villavicencio
hvillavicencio@imca.edu.pe
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2403.0457Abstract
We prove some equivalences associated with the case when the average lower time is minimal. In addition, we characterize the minimal systems by means of the positivity of invariant measures on open sets and also the minimum ergodic averages. Finally, we show that a minimal system admits an open set whose measure is minimal with respect to a set of ergodic measures and its value can be chosen in [0, 1].
Keywords
S. Addas-Zanata and F. A. Tal, “Support of maximizing measures for typical C0 dynamics on compact manifolds”, Discrete Contin. Dyn. Syst., vol. 26, no. 3, pp. 795–804, 2010.
W. Huang, Z. Lian, S. Shao and X. Ye, “Minimal systems with finitely many ergodic mea- sures”, J. Funct. Anal., vol. 280, no. 12, Paper No. 109000, 42 pages, 2021.
O. Jenkinson, “Every ergodic measure is uniquely maximizing”, Discrete Contin. Dyn. Syst., vol. 16, no. 2, pp. 383–392, 2006.
O. Jenkinson,“Ergodic optimization in dynamical systems”,Ergodic Theory Dynam. Systems, vol. 39, no. 10, pp. 2593–2618, 2019.
K. Liu, L. Xu and R. Zhang, “Time-restricted sensitivity and entropy”, J. Differential Equations, vol. 293, pp. 70–85, 2021.
I. Morris, “Lyapunov-maximizing measures for pairs of weighted shift operators”, Ergodic Theory Dynam. Systems, vol. 39, no. 1, pp. 225–247, 2019.
I. Morris, “Prevalent uniqueness in ergodic optimisation”, Proc. Amer. Math. Soc., vol. 149, no. 4, pp. 1631–1639, 2021.
M. Viana and K. Oliveira, Foundations of ergodic theory, Cambridge studies in advanced mathematics 151, Cambridge: Cambridge University Press, 2016.
P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79, New York: Springer New York, 1982.
Similar Articles
- Augusto Visintin, About Models of Ferromagnetic Hysteresis , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- H. Peter Gumm, State based systems are coalgebras , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Elena I. Kaikina, Leonardo Guardado-Zavala, Hector F. Ruiz-Paredes, S. Juarez Zirate, Korteweg-de Vries-Burgers equation on a segment , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Daniele C. Struppa, Computational Algebraic Analysis of Systems Differential Equations , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Toufik Moussaoui, Radu Precup, Positive Solutions for Elliptic Boundary Value Problems with a Harnack-Like Property , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Joachim Toft, Pseudo-differential operators with smooth symbols on modulation spaces , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Abderemane Morame, Françoise Truc, Accuracy on eigenvalues for a Schrödinger operator with a degenerate potential in the semi-classical limit , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.