Estimates for the polar derivative of a constrained polynomial on a disk
-
Gradimir V. Milovanović
gvm@mi.sanu.ac.rs
-
Abdullah Mir
mabdullah_mir@uok.edu.in
-
Adil Hussain
malikadil6909@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2403.0541Abstract
This work is a part of a recent wave of studies on inequalities which relate the uniform-norm of a univariate complex coefficient polynomial to its derivative on the unit disk in the plane. When there is a limit on the zeros of a polynomial, we develop some additional inequalities that relate the uniform-norm of the polynomial to its polar derivative. The obtained results support some recently established ErdÅ‘s-Lax and Turán-type inequalities for constrained polynomials, as well as produce a number of inequalities that are sharper than those previously known in a very large literature on this subject.
Keywords
A. Aziz and N. Ahmad, “Inequalities for the derivative of a polynomial”, Proc. Indian Acad. Sci. Math. Sci., vol. 107, no. 2, pp. 189–196, 1997.
A. Aziz and Q. M. Dawood, “Inequalities for a polynomial and its derivative”, J. Approx. Theory, vol. 54, no. 3, pp. 306–313, 1988.
A. Aziz and N. A. Rather, “A refinement of a theorem of Paul Turán concerning polynomials”, Math. Inequal. Appl., vol. 1, no. 2, pp. 231–238, 1998.
S. Bernstein, Sur l‘ordre de la meilleure approximation des functions continues par des polynômes de degré donné, Mémoires de l‘Académie Royale de Belgique 4, Brussels:Hayez, imprimeur des académies royales, 1912.
K. K. Dewan, N. Singh, A. Mir and A. Bhat, “Some inequalities for the polar derivative of a polynomial”, Southeast Asian Bull. Math., vol. 34, no. 1, pp. 69–77, 2010.
K. K. Dewan and C. M. Upadhye, “Inequalities for the polar derivative of a polynomial”, JIPAM. J. Inequal. Pure Appl. Math., vol. 9, no. 4, Article 119, 9 pages, 2008.
R. B. Gardner, N. K. Govil and G. V. Milovanović, Extremal problems and inequalities of Markov-Bernstein type for algebraic polynomials, Mathematical Analysis and Its Applications, London: Elsevier/Academic Press, 2022.
N. K. Govil, “On the derivative of a polynomial”; Proc. Amer. Math. Soc., vol. 41, no. 2, pp. 543–546, 1973.
N. K. Govil, “On a theorem of S. Bernstein”, Proc. Nat. Acad. Sci. India Sec. A., vol. 50, no. 1, pp. 50–52, 1980.
N. K. Govil, “Some inequalities for derivative of polynomials”, J. Approx. Theory, vol. 66, no. 1, pp. 29–35, 1991.
N. K. Govil and P. Kumar, “On sharpening of an inequality of Turán”, Appl. Anal. Discrete Math., vol. 13, no. 3, pp. 711–720, 2019.
N. K. Govil and Q. I. Rahman, “Functions of exponential type not vanishing in a half plane and related polynomials”, Trans. Amer. Math. Soc., vol. 137, pp. 501–517, 1969.
P. Kumar and R. Dhankhar, “Some refinements of inequalities for polynomials”, Bull. Math. Soc. Sci. Math. Roumanie (N.S), vol. 63(111), no. 4, pp. 359–367, 2020.
P. D. Lax, “Proof of a conjecture of P. ErdÅ‘s on the derivative of a polynomial”, Bull. Amer. Math. Soc., vol. 50, no. 8, pp. 509–513, 1944.
M. A. Malik, “On the derivative of a polynomial”, J. London Math. Soc.(2), vol. 1, no. 1, pp. 57–60, 1969.
M. Marden, Geometry of Polynomials, 2nd edition, Mathematical Surveys 3, Providence, R. I.: American Mathematical Society, 1966.
G. V. Milovanović, A. Mir and A. Hussain, “Extremal problems of Bernstein-type and an operator preserving inequalities between polynomials”, Sib. Math. J., vol. 63, no. 1, pp. 138– 148, 2022.
G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials, extremal problems, inequalities, zeros, River Edge, NJ: World Scientific Publishing, 1994.
A. Mir, “On an operator preserving inequalities between polynomials”, Ukrainian Math. J., vol. 69, no. 8, pp. 1234–1247, 2018.
A. Mir and D. Breaz, “Bernstein and Turán-type inequalities for a polynomial with constraints on its zeros”, Rev. R. Acad. Cienc. Exactas F Ìıs. Nat. Ser. A Mat. RACSAM, vol. 115, no. 3, Paper No. 124, 12 pages, 2021.
A. Mir and I. Hussain, “On the ErdÅ‘s-Lax inequality concerning polynomials”, C. R. Math. Acad. Sci. Paris, vol. 355, no. 10, pp. 1055–1062, 2017.
G. Pólya and G. SzegÅ‘, “Aufgaben und Lehrsätze aus der Analysis”, Grundlehren der mathematischen Wissenschaften 19–20, Berlin: Springer, 1925.
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs New Series 26, New York: Oxford University Press, Inc., 2002.
T. B. Singh and B. Chanam, “Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of a polynomial”, J. Math. Inequal., vol. 15, no. 4, pp. 1663–1675, 2021.
P. Turán, "Ìber die Ableitung von Polynomen”, Compositio Math., vol. 7, pp. 89–95, 1940.
Similar Articles
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- S.K. Mohanta, Srikanta Mohanta, A common fixed point theorem in G-metric spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Paulo Brumatti, Plamen Koshlukov, Chinese Remainder Theorem, Ancient and Contemporary , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Manuel Pinto, Nonlinear Impulsive Differential Systems , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- K.P.R. Rao, G.N.V. Kishore, Nguyen Van Luong, A unique common coupled fixed point theorem for four maps under ψ - φ contractive condition in partial metric spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Volodymyr Sushch, Self-Dual and Anti-Self-Dual Solutions of Discrete Yang-Mills Equations on a Double Complex , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











