On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial
-
Abhijit Banerjee
abanerjeekal@gmail.com
-
Arpita Kundu
arpitakundu.math.ku@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.497Abstract
In this article, we have mainly focused on the uniqueness problem of an \(L\)-function \(\mathcal{L}\) with an \(L\)-function or a meromorphic function \(f\) under the condition of sharing the sets, generated from the zero set of some strong uniqueness polynomials. We have introduced two new definitions, which extend two existing important definitions of URSM and UPM in the literature and the same have been used to prove one of our main results. As an application of the result, we have exhibited a much improved and extended version of a recent result of Khoai-An-Phuong [23]. Our remaining results are about the uniqueness of \(L\)-function under weighted sharing of sets generated from the zeros of a suitable strong uniqueness polynomial, which improve and extend some results in [12].
Keywords
Mathematics Subject Classification:
T. T. H. An, J. T.-Y. Wang, and P.-M. Wong, “Strong uniqueness polynomials: the complex case,” Complex Var. Theory Appl., vol. 49, no. 1, pp. 25–54, 2004, doi: 10.1080/02781070310001634601.
A. Banerjee and S. Maity, “Further investigations on a unique range set under weight 0 and 1,” Carpathian Math. Publ., vol. 14, no. 2, pp. 504–512, 2022.
A. Banerjee, “Uniqueness of meromorphic functions sharing two sets with finite weight II,” Tamkang J. Math., vol. 41, no. 4, pp. 379–392, 2010.
A. Banerjee and I. Lahiri, “A uniqueness polynomial generating a unique range set and vice versa,” Comput. Methods Funct. Theory, vol. 12, no. 2, pp. 527–539, 2012, doi: 10.1007/BF03321842.
A. Banerjee and S. Mallick, “On the characterisations of a new class of strong uniqueness polynomials generating unique range sets,” Comput. Methods Funct. Theory, vol. 17, no. 1, pp. 19–45, 2017, doi: 10.1007/s40315-016-0174-y.
H. Fujimoto, “On uniqueness of meromorphic functions sharing finite sets,” Amer. J. Math., vol. 122, no. 6, pp. 1175–1203, 2000.
H. Fujimoto, “On uniqueness polynomials for meromorphic functions,” Nagoya Math. J., vol. 170, pp. 33–46, 2003, doi: 10.1017/S0027763000008527.
F. Gross, “Factorization of meromorphic functions and some open problems,” in Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), ser. Lecture Notes in Math. Springer, Berlin-New York, 1977, vol. 599, pp. 51–67.
W. K. Hayman, Meromorphic functions, ser. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1964.
P.-C. Hu and B. Q. Li, “A simple proof and strengthening of a uniqueness theorem for L- functions,” Canad. Math. Bull., vol. 59, no. 1, pp. 119–122, 2016, doi: 10.4153/CMB-2015- 045-1.
H. H. Khoai, V. H. An, and L. Q. Ninh, “Value-sharing and uniqueness for L-functions,” Ann. Polon. Math., vol. 126, no. 3, pp. 265–278, 2021, doi: 10.4064/ap201030-17-3.
H. H. Khoai and V. H. An, “Determining an L-function in the extended Selberg class by its preimages of subsets,” Ramanujan J., vol. 58, no. 1, pp. 253–267, 2022, doi: 10.1007/s11139- 021-00483-y.
H. H. Khoai, V. H. An, and N. D. Phuong, “On value distribution of L-functions sharing finite sets with meromorphic functions,” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 66(114), no. 3, pp. 265–280, 2023.
I. Lahiri, “Weighted value sharing and uniqueness of meromorphic functions,” Complex Variables Theory Appl., vol. 46, no. 3, pp. 241–253, 2001, doi: 10.1080/17476930108815411.
P. Li and C.-C. Yang, “Some further results on the unique range sets of meromorphic functions,” Kodai Math. J., vol. 18, no. 3, pp. 437–450, 1995, doi: 10.2996/kmj/1138043482.
P. Lin and W. Lin, “Value distribution of L-functions concerning sharing sets,” Filomat, vol. 30, no. 14, pp. 3795–3806, 2016, doi: 10.2298/FIL1614795L.
A. Z. Mohon’ko, “The Nevanlinna characteristics of certain meromorphic functions,” Teor. Funkcii Funkcional. Anal. i Priložen., no. 14, pp. 83–87, 1971.
A. Selberg, “Old and new conjectures and results about a class of Dirichlet series,” in Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989). Univ. Salerno, Salerno, 1992, pp. 367–385.
J. Steuding, Value-distribution of L-functions, ser. Lecture Notes in Mathematics. Springer, Berlin, 2007, vol. 1877.
C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, ser. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, vol. 557, doi: 10.1007/978-94-017-3626-8.
H.-X. Yi, “The reduced unique range sets for entire or meromorphic functions,” Complex Variables Theory Appl., vol. 32, no. 3, pp. 191–198, 1997, doi: 10.1080/17476939708814990.
Q.-Q. Yuan, X.-M. Li, and H.-X. Yi, “Value distribution of L-functions and uniqueness questions of F. Gross,” Lith. Math. J., vol. 58, no. 2, pp. 249–262, 2018, doi: 10.1007/s10986-018- 9390-7.
- 09/106(0200)/2019-EMR-I
Most read articles by the same author(s)
- Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Gradimir V. Milovanović, Abdullah Mir, Adil Hussain, Estimates for the polar derivative of a constrained polynomial on a disk , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- J. D. García-Saldaña, S. Rebollo-Perdomo, Ciclos límite en el plano: Contribuciones desde Chile , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Sergio Abraham Ibrahim, Pedro Fernandez, Una Experiencia de integración numérica con técnicas Monte Carlo , CUBO, A Mathematical Journal: Vol. 1 No. 1 (1999): CUBO, Matemática Educacional
- M.H. Saleh, D.Sh. Mohammed, Numerical solution of singular and non singular integral equations , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Banerjee et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











