On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight
-
Seyed Mostafa Sajjadi
sjadysydmstfy@gmail.com
-
Ghasem Alizadeh Afrouzi
afrouzi@umz.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.107Abstract
This paper is concerned with a class of fractional \(p(x,y)-\)Kirchhoff type problems with Dirichlet boundary data along with indefinite weight of the following form
\begin{equation*}
\left\lbrace\begin{array}{ll}
M\left(\int_{Q}\frac{1}{p(x,y)}\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}\,dx\,dy\right)\\
(-\triangle_{p(x)})^s+|u(x)|^{q(x)-2}u(x) & \\
=\lambda V(x)|u(x)|^{r(x)-2}u(x)& \text{in }\Omega,\\
u=0, & \text{in }\mathbb{R}^N\Omega.
\end{array}\right.
\end{equation*}
By means of direct variational approach and Ekeland’s variational principle, we investigate the existence of nontrivial weak solutions for the above problem in case of the competition between the growth rates of functions \(p\) and \(r\) involved in above problem, this fact is essential in describing the set of eigenvalues of this problem.
Keywords
Mathematics Subject Classification:
S. Antontsev, F. Miranda, and L. Santos, “Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism,” J. Math. Anal. Appl., vol. 440, no. 1, pp. 300–322, 2016, doi: 10.1016/j.jmaa.2016.03.045.
E. Azroul, A. Benkirane, and M. Shimi, “Eigenvalue problems involving the fractional p(x)-Laplacian operator,” Adv. Oper. Theory, vol. 4, no. 2, pp. 539–555, 2019, doi: 10.15352/aot.1809-1420.
E. Azroul, A. Benkirane, M. Shimi, and M. Srati, “On a class of fractional p(x)-Kirchhoff type problems,” Appl. Anal., vol. 100, no. 2, pp. 383–402, 2021, doi: 10.1080/00036811.2019.1603372.
A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379–389, 2018, doi: 10.3934/dcdss.2018021.
N. T. Chung, “Eigenvalue problems for fractional p(x,y)-Laplacian equations with indefinite weight,” Taiwanese J. Math., vol. 23, no. 5, pp. 1153–1173, 2019, doi: 10.11650/tjm/190404.
F. J. S. A. Corrêa and G. M. Figueiredo, “On a p-Kirchhoff equation via Krasnoselskii’s genus,” Appl. Math. Lett., vol. 22, no. 6, pp. 819–822, 2009, doi: 10.1016/j.aml.2008.06.042.
I. Ekeland, “On the variational principle,” J. Math. Anal. Appl., vol. 47, pp. 324–353, 1974, doi: 10.1016/0022-247X(74)90025-0.
X. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω),” J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001, doi: 10.1006/jmaa.2000.7617.
U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qual. Theory Differ. Equ., 2017, Art. ID 76, doi: 10.14232/ejqtde.2017.1.76.
Most read articles by the same author(s)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- A. Bultheel, H. Mart´Ä±nez, An introduction to the Fractional Fourier Transform and friends , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- George A. Anastassiou, Spline left fractional monotone approximation involving left fractional differential operators , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- A.G. Ramm, One-dimensional inverse scattering and spectral problems , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. M. Sajjadi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.