On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight
-
Seyed Mostafa Sajjadi
sjadysydmstfy@gmail.com
-
Ghasem Alizadeh Afrouzi
afrouzi@umz.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.107Abstract
This paper is concerned with a class of fractional \(p(x,y)-\)Kirchhoff type problems with Dirichlet boundary data along with indefinite weight of the following form
\begin{equation*}
\left\lbrace\begin{array}{ll}
M\left(\int_{Q}\frac{1}{p(x,y)}\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}\,dx\,dy\right)\\
(-\triangle_{p(x)})^s+|u(x)|^{q(x)-2}u(x) & \\
=\lambda V(x)|u(x)|^{r(x)-2}u(x)& \text{in }\Omega,\\
u=0, & \text{in }\mathbb{R}^N\Omega.
\end{array}\right.
\end{equation*}
By means of direct variational approach and Ekeland’s variational principle, we investigate the existence of nontrivial weak solutions for the above problem in case of the competition between the growth rates of functions \(p\) and \(r\) involved in above problem, this fact is essential in describing the set of eigenvalues of this problem.
Keywords
Mathematics Subject Classification:
S. Antontsev, F. Miranda, and L. Santos, “Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism,” J. Math. Anal. Appl., vol. 440, no. 1, pp. 300–322, 2016, doi: 10.1016/j.jmaa.2016.03.045.
E. Azroul, A. Benkirane, and M. Shimi, “Eigenvalue problems involving the fractional p(x)-Laplacian operator,” Adv. Oper. Theory, vol. 4, no. 2, pp. 539–555, 2019, doi: 10.15352/aot.1809-1420.
E. Azroul, A. Benkirane, M. Shimi, and M. Srati, “On a class of fractional p(x)-Kirchhoff type problems,” Appl. Anal., vol. 100, no. 2, pp. 383–402, 2021, doi: 10.1080/00036811.2019.1603372.
A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379–389, 2018, doi: 10.3934/dcdss.2018021.
N. T. Chung, “Eigenvalue problems for fractional p(x,y)-Laplacian equations with indefinite weight,” Taiwanese J. Math., vol. 23, no. 5, pp. 1153–1173, 2019, doi: 10.11650/tjm/190404.
F. J. S. A. Corrêa and G. M. Figueiredo, “On a p-Kirchhoff equation via Krasnoselskii’s genus,” Appl. Math. Lett., vol. 22, no. 6, pp. 819–822, 2009, doi: 10.1016/j.aml.2008.06.042.
I. Ekeland, “On the variational principle,” J. Math. Anal. Appl., vol. 47, pp. 324–353, 1974, doi: 10.1016/0022-247X(74)90025-0.
X. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω),” J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001, doi: 10.1006/jmaa.2000.7617.
U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qual. Theory Differ. Equ., 2017, Art. ID 76, doi: 10.14232/ejqtde.2017.1.76.
Most read articles by the same author(s)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- Rupali Shinde, Christophe Chesneau, Nitin Darkunde, Solutions of two open problems on inequalities involving trigonometric and hyperbolic functions , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Tatyana A. Komleva, Andrej V. Plotnikov, Natalia V. Skripnik, Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Fethi Soltani, Extremal functions and best approximate formulas for the Hankel-type Fock space , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. M. Sajjadi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











