On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight
-
Seyed Mostafa Sajjadi
sjadysydmstfy@gmail.com
-
Ghasem Alizadeh Afrouzi
afrouzi@umz.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.107Abstract
This paper is concerned with a class of fractional \(p(x,y)-\)Kirchhoff type problems with Dirichlet boundary data along with indefinite weight of the following form
\begin{equation*}
\left\lbrace\begin{array}{ll}
M\left(\int_{Q}\frac{1}{p(x,y)}\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}\,dx\,dy\right)\\
(-\triangle_{p(x)})^s+|u(x)|^{q(x)-2}u(x) & \\
=\lambda V(x)|u(x)|^{r(x)-2}u(x)& \text{in }\Omega,\\
u=0, & \text{in }\mathbb{R}^N\Omega.
\end{array}\right.
\end{equation*}
By means of direct variational approach and Ekeland’s variational principle, we investigate the existence of nontrivial weak solutions for the above problem in case of the competition between the growth rates of functions \(p\) and \(r\) involved in above problem, this fact is essential in describing the set of eigenvalues of this problem.
Keywords
Mathematics Subject Classification:
S. Antontsev, F. Miranda, and L. Santos, “Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism,” J. Math. Anal. Appl., vol. 440, no. 1, pp. 300–322, 2016, doi: 10.1016/j.jmaa.2016.03.045.
E. Azroul, A. Benkirane, and M. Shimi, “Eigenvalue problems involving the fractional p(x)-Laplacian operator,” Adv. Oper. Theory, vol. 4, no. 2, pp. 539–555, 2019, doi: 10.15352/aot.1809-1420.
E. Azroul, A. Benkirane, M. Shimi, and M. Srati, “On a class of fractional p(x)-Kirchhoff type problems,” Appl. Anal., vol. 100, no. 2, pp. 383–402, 2021, doi: 10.1080/00036811.2019.1603372.
A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379–389, 2018, doi: 10.3934/dcdss.2018021.
N. T. Chung, “Eigenvalue problems for fractional p(x,y)-Laplacian equations with indefinite weight,” Taiwanese J. Math., vol. 23, no. 5, pp. 1153–1173, 2019, doi: 10.11650/tjm/190404.
F. J. S. A. Corrêa and G. M. Figueiredo, “On a p-Kirchhoff equation via Krasnoselskii’s genus,” Appl. Math. Lett., vol. 22, no. 6, pp. 819–822, 2009, doi: 10.1016/j.aml.2008.06.042.
I. Ekeland, “On the variational principle,” J. Math. Anal. Appl., vol. 47, pp. 324–353, 1974, doi: 10.1016/0022-247X(74)90025-0.
X. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω),” J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001, doi: 10.1006/jmaa.2000.7617.
U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qual. Theory Differ. Equ., 2017, Art. ID 76, doi: 10.14232/ejqtde.2017.1.76.
Most read articles by the same author(s)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Weihui Wang, Zuodong Yang, Nonnegative solutions of quasilinear elliptic problems with sublinear indefinite nonlinearity , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Tatyana A. Komleva, Andrej V. Plotnikov, Natalia V. Skripnik, Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Syed Abbas, Weighted pseudo almost automorphic solutions of fractional functional differential equations , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. M. Sajjadi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.