Minkowski type inequalities for a generalized fractional integral
-
Wael Abdelhedi
wael_hed@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.007Abstract
In this paper we introduce a new generalized fractional integral unifying most of previous existing fractional integrals. Then, we prove some essential properties of this new operator under some classical assumptions. As application, we use this novel fractional integral to establish a several inequalities of Minkowski type. Our results recover a large number of a well known inequalities in the literature.
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U. S. Government Printing Office, Washington, DC, 1964, vol. 55.
M. Adil Khan, S. Begum, Y. Khurshid, and Y.-M. Chu, “Ostrowski type inequalities involving conformable fractional integrals,” J. Inequal. Appl., 2018, Art. ID 70, doi: 10.1186/s13660-018-1664-4.
R. Agarwal, N. Kumar, R. K. Parmar, and S. D. Purohit, “Some families of the general Mathieu-type series with associated properties and functional inequalities,” Math. Methods Appl. Sci., vol. 45, no. 4, pp. 2132–2150, 2022, doi: 10.1002/mma.7913.
S. Ali, S.Mubeen, R. S. Ali, G. Rahman, A. Morsy, K. S. Nisar, S. D. Purohit, and M. Zakarya, “Dynamical significance of generalized fractional integral inequalities via convexity,” AIMS Math., vol. 6, no. 9, pp. 9705–9730, 2021, doi: 10.3934/math.2021565.
T. A. Aljaaidi and D. B. Pachpatte, “The Minkowski’s inequalities via Ψ-Riemann-Liouville fractional integral operators,” Rend. Circ. Mat. Palermo (2), vol. 70, no. 2, pp. 893–906, 2021, doi: 10.1007/s12215-020-00539-w.
T. M. Atanacković, S. Pilipović, B. Stanković, and D. Zorica, Fractional calculus with applications in mechanics: Wave propagation, impact and variational principles, ser. Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014.
D. Baleanu, S. D. Purohit, and F. Uçar, “On Grüss type integral inequality involving the Saigo’s fractional integral operators,” J. Comput. Anal. Appl., vol. 19, no. 3, pp. 480–489, 2015.
Y. Basci and D. Baleanu, “Ostrowski type inequalities involving ψ-Hilfer fractional integrals,” Mathematics, vol. 7, no. 9, pp. 9705–9730, 2019, Art. ID 770, doi: 10.3390/math7090770.
L. Bougoffa, “On Minkowski and Hardy integral inequalities,” JIPAM. J. Inequal. Pure Appl. Math., vol. 7, no. 2, 2006, Art. ID 60.
S. I. Butt, A. O. Akdemir, M. Nadeem, and M. A. Raza, “Grüss type inequalities via generalized fractional operators,” Math. Methods Appl. Sci., vol. 44, no. 17, pp. 12559–12574, 2021, doi: 10.1002/mma.7563.
F. Chen, “Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals,” J. Math. Inequal., vol. 10, no. 1, pp. 75–81, 2016, doi: 10.7153/jmi-10-07.
H. Chen and U. N. Katugampola, “Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals,” J. Math. Anal. Appl., vol. 446, no. 2, pp. 1274–1291, 2017, doi: 10.1016/j.jmaa.2016.09.018.
V. L. Chinchane and D. B. Pachpatte, “New fractional inequalities via Hadamard fractional integral,” Int. J. Funct. Anal. Oper. Theory Appl., vol. 5, no. 3, pp. 165–176, 2013.
Y. Cho, I. Kim, and D. Sheen, “A fractional-order model for MINMOD Millennium,” Math. Biosci., vol. 262, pp. 36–45, 2015, doi: 10.1016/j.mbs.2014.11.008.
J. V. da C. Sousa and E. C. de Oliveira, “The Minkowski’s inequality by means of a generalized fractional integral,” AIMS Mathematics, vol. 3, no. 1, pp. 131–147, 2018, doi: 10.3934/Math.2018.1.131.
J. V. da C. Sousa, D. S. Oliveira, and E. C. de Oliveira, “Grüss-type inequalities by means of generalized fractional integrals,” Bull. Braz. Math. Soc. (N.S.), vol. 50, no. 4, pp. 1029–1047, 2019.
Z. Dahmani, “On Minkowski and Hermite-Hadamard integral inequalities via fractional integration,” Ann. Funct. Anal., vol. 1, no. 1, pp. 51–58, 2010.
J. Espíndola, J. Neto, and E. Lopes, “A generalised fractional derivative approach to viscoelastic material properties measurement,” Appl. Math. and Comp., vol. 164, pp. 493–506, 2005, doi: 10.1016/j.amc.2004.06.099.
G. Farid, “Some new Ostrowski type inequalities via fractional integrals,” Int. J. Anal. Appl., vol. 14, pp. 64–68, 2017.
P. Guzmán and J. Nápoles Valdés, “Generalized fractional Grüss-type inequalities,” Int. J. Anal. Appl., vol. 2, pp. 16–21, 2020, doi: 10.47443/cm.2020.0029.
S. Habib, S. Mubeen, and M. N. Naeem, “Chebyshev type integral inequalities for generalized k-fractional conformable integrals,” J. Inequal. Spec. Funct., vol. 9, no. 4, pp. 53–65, 2018.
G. H. Hardy, J. Littlewood, and G. Pólya, Inequalities. bridge, England, 1934. Cambridge University Press, Cambridge, England, 1934.
K. Jangid, S. D. Purohit, K. S. Nisar, and S. Araci, “Chebyshev type inequality containing a fractional integral operator with a multi-index Mittag-Leffler function as a kernel,” Analysis (Berlin), vol. 41, no. 1, pp. 61–67, 2021, doi: 10.1515/anly-2020-0051.
E. Kacar, Z. Kacar, and H. Yildirim, “Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function,” Iran. J. Math. Sci. Inform., vol. 13, no. 1, pp. 1–13, 2018.
U. Katugampola, “New fractional integral unifying six existing fractional integrals,” 2016, arXiv: 1612.08596.
M. A. Khan, Y. Khurshid, T.-S. Du, and Y.-M. Chu, “Generalization of Hermite-Hadamard type inequalities via conformable. fractional integrals,” J. Funct. Spaces, 2018, Art.ID5357463, doi: 10.1155/2018/5357463.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, ser. North-Holland. Mathematics Studies. Elsevier Science B. V., Amsterdam, 2006, vol. 204.
R. L. Magin, “Fractional calculus models of complex dynamics in biological tissues,” Comput. Math. Appl., vol. 59, no. 5, pp. 1586-1593, 2010, doi: 10.1016/j.camwa.2009.08.039.
B. Meftah and D. Foukrach, “Some new Gronwall-Bellman-Bihari type integral inequality associated with ψ-Hilfer fractional derivative,” Analysis (Berlin), vol. 43, no. 2, pp. 117–127, 2023.
F. C. Meral, T. J. Royston, and R. Magin, “Fractional calculus in viscoelasticity: an experimental study,” Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 4, pp. 939–945, 2010, doi: 10.1016/j.cnsns.2009.05.004.
M. A. Moreles and R. Lainez, “Mathematical modelling of fractional order circuit elements and bioimpedance applications,” Commun. Nonlinear Sci. Numer. Simul., vol. 46, pp. 81–88, 2017, doi: 10.1016/j.cnsns.2016.10.020.
S. Mubeen, S. Habib, and M. N. Naeem, “The Minkowski inequality involving generalized k-fractional conformable integral,” J. Inequal. Appl., 2019, Art. ID 81, doi: 10.1186/s13660-019-2040-8.
A. B. Nale, S. K. Panchal, and V. L. Chinchane, “Minkowski-type inequalities using generalized proportional Hadamard fractional integral operators,” Filomat, vol. 35, no. 9, pp. 2973–2984, 2021.
K. S. Nisar, G. Rahman, and K. Mehrez, “Chebyshev type inequalities via generalized fractional conformable integrals,” J. Inequal. Appl., 2019, Art. ID 245.
S. Panwar, R. M. Pandey, P. Rai, S. D. Purohit, and D. L. Suthar, “Hermite-Hadamard-Mercer’s type inequalities for ABK-fractional integrals via strong convexity and its applications,” Discontinuity, Nonlinearity, and Complexity, vol. 13, no. 4, pp. 663–674, 2024, doi:
5890/DNC.2024.12.007.
Ł. Płociniczak, “Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications,” Commun. Nonlinear Sci. Numer. Simul., vol. 24, no. 1-3, pp. 169–183, 2015, doi: 10.1016/j.cnsns.2015.01.005.
G. Rahman, A. Khan, T. Abdeljawad, and K. S. Nisar, “The Minkowski inequalities via generalized proportional fractional integral operators,” Adv. Difference Equ., 2019, Art. ID 287, doi: 10.1186/s13662-019-2229-7.
S. Rashid, A. O. Akdemir, K. S. Nisar, T. Abdeljawad, and G. Rahman, “New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals,” J. Inequal. Appl., 2020, Art. ID 177, doi: 10.1186/s13660-020-02445-2.
S. Rashid, F. Jarad, and Y.-M. Chu, “A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function,” Math. Probl. Eng., 2020, Art. ID 7630260, doi: 10.1155/2020/7630260.
S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, and J.-B. Liu, “On Grüss inequalities within generalized K-fractional integrals,” Adv. Difference Equ., p. Art. ID 203, 2020.
E. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar, and U. Ortiz-Mendez, “Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials,” J. Appl. Polymer Sci., vol. 98, no. 2, pp. 923–935, 2005, doi: 10.1002/app.22057.
E. Set, M. E. Özdemir, and S. Demirbaş, “Chebyshev type inequalities involving extended generalized fractional integral operators,” AIMS Math., vol. 5, no. 4, pp. 3573–3583, 2020, doi: 10.3934/math.2020232.
H. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, “A new collection of real world applications of fractional calculus in science and engineering,” Communications in Nonlinear Science and Numerical Simulation, vol. 64, pp. 213–231, 2018.
S. Taf and K. Brahim, “Some new results using Hadamard fractional integral,” Int. J. Nonlinear Anal. Appl., pp. 103–109, 2016, doi: 10.22075/ijnaa.2015.299.
V. E. Tarasov and V. V. Tarasova, “Macroeconomic models with long dynamic memory: fractional calculus approach,” Appl. Math. Comput., vol. 338, pp. 466–486, 2018, doi: 10.1016/j.amc.2018.06.018.
F. Usta, H. Budak, and M. Z. Sarıkaya, “Some new Chebyshev type inequalities utilizing generalized fractional integral operators,” AIMS Math., vol. 5, no. 2, pp. 1147–1161, 2020.
J. Vanterler da C. Sousa and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative,” Commun. Nonlinear Sci. Numer. Simul., vol. 60, pp. 72–91, 2018.
H. Yaldiz and E. Set, “Some new Ostrowski type inequalities for generalized fractional integrals,” AIP Conference Proceedings, pp. 103–109, 1991, doi: 10.1063/1.5047891.
Ç. Yildiz, M. Emin Özdemir, and M. Zeki Sarikaya, “New generalizations of Ostrowski-like type inequalities for fractional integrals,” Kyungpook Math. J., vol. 56, no. 1, pp. 161–172, 2016, doi: 10.5666/KMJ.2016.56.1.161.
Similar Articles
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 W. Abdelhedi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.