A sub-elliptic system with strongly coupled critical terms and concave nonlinearities
-
Rachid Echarghaoui
rachid.echarghaoui@uit.ac.ma
-
Abdelouhab Hatimi
abdelouhab.hatimi@uit.ac.ma
-
Mohamed Hatimi
mohamed.hatimi@uit.ac.ma
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.595Abstract
In this work, we study the Nehari manifold and its application to the following sub-elliptic system involving strongly coupled critical terms and concave nonlinearities:
\[
\left\{
\begin{aligned}
-\Delta_{\mathbb{G}} u
&= \frac{\eta_{1}\alpha_{1}}{2^*}\,|u|^{\alpha_{1}-2}|v|^{\beta_{1}}u
+\frac{\eta_{2}\alpha_{2}}{2^*}\,|u|^{\alpha_{2}-2}|v|^{\beta_{2}}u
\\ &+\lambda\, g(z)\,|u|^{q-2}u,
&& z\in\Omega, \\
-\Delta_{\mathbb{G}} v
&= \frac{\eta_{1}\beta_{1}}{2^*}\,|u|^{\alpha_{1}}|v|^{\beta_{1}-2}v
+\frac{\eta_{2}\beta_{2}}{2^*}\,|u|^{\alpha_{2}}|v|^{\beta_{2}-2}v
\\ &+\mu\, h(z)\,|v|^{q-2}v,
&& z\in\Omega, \\
u &= v = 0, && z\in\partial\Omega,
\end{aligned}
\right.
\]
where \(\Omega\) is an open bounded subset of \(\mathbb{G}\) with smooth boundary, \(-\Delta_{\mathbb{G}}\) is the sub-Laplacian on a Carnot group \(\mathbb{G}\); \(\eta_1, \eta_2, \lambda, \mu\) are positive, \(\alpha_1+\beta_1=2^*\), \(\alpha_2+\beta_2=2^*\), \(1<q<2\), \(2^*=\frac{2Q}{Q-2}\) is the critical Sobolev exponent, and \(Q\) is the homogeneous dimension of \(\mathbb{G}\). By exploiting the Nehari manifold and variational methods, we prove that the system has at least two positive solutions.
Keywords
Mathematics Subject Classification:
C. O. Alves and Y. H. Ding, “Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity,” J. Math. Anal. Appl., vol. 279, no. 2, pp. 508–521, 2003, doi: 10.1016/S0022-247X(03)00026-X.
S. Benmouloud, R. Echarghaoui, and S. M. Sbaï, “Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities,” J. Math. Anal. Appl., vol. 396, no. 1, pp. 375–385, 2012, doi: 10.1016/j.jmaa.2012.05.078.
A. Bonfiglioli and F. Uguzzoni, “Nonlinear Liouville theorems for some critical problems on H-type groups,” J. Funct. Anal., vol. 207, no. 1, pp. 161–215, 2004, doi: 10.1016/S0022-1236(03)00138-1.
J.-M. Bony, “Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,” Ann. Inst. Fourier (Grenoble), vol. 19, pp. 277–304 xii, 1969.
K. J. Brown and T.-F. Wu, “A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function,” J. Math. Anal. Appl., vol. 337, no. 2, pp. 1326–1336, 2008, doi: 10.1016/j.jmaa.2007.04.064.
G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., vol. 13, no. 2, pp. 161–207, 1975, doi: 10.1007/BF02386204.
G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, ser. Mathematical Notes. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982, vol. 28.
N. Garofalo and D. Vassilev, “Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups,” Math. Ann., vol. 318, no. 3, pp. 453–516, 2000, doi: 10.1007/s002080000127.
T.-S. Hsu, “Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities,” Nonlinear Anal., vol. 71, no. 7-8, pp. 2688–2698, 2009, doi: 10.1016/j.na.2009.01.110.
T.-S. Hsu and H.-L. Lin, “Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 139, no.6, pp.1163–1177, 2009, doi: 10.1017/S0308210508000875.
A. Loiudice, “Semilinear subelliptic problems with critical growth on Carnot groups,” Manuscripta Math., vol. 124, no. 2, pp. 247–259, 2007, doi: 10.1007/s00229-007-0119-x.
A. Loiudice, “Critical growth problems with singular nonlinearities on Carnot groups,” Non-linear Anal., vol. 126, pp. 415–436, 2015, doi: 10.1016/j.na.2015.06.010.
A. Loiudice, “Local behavior of solutions to subelliptic problems with Hardy potential on Carnot groups,” Mediterr. J. Math., vol. 15, no. 3, 2018, Art ID 81, doi: 10.1007/s00009-018-1126-8.
M. Ruzhansky and D. Suragan, Hardy inequalities on homogeneous groups, ser. Progress in Mathematics. Birkhäuser/Springer, Cham, 2019, vol. 327, doi: 10.1007/978-3-030-02895-4.
M. Ruzhansky, N. Tokmagambetov, and N. Yessirkegenov, “Best constants in Sobolev and Gagliardo-Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations,” Calc. Var. Partial Differential Equations, vol. 59, no. 5, 2020, Art. ID 175, doi: 10.1007/s00526-020-01835-0.
G. Tarantello, “On nonhomogeneous elliptic equations involving critical Sobolev exponent,” Ann. Inst. H. Poincaré C Anal. Non Linéaire, vol. 9, no. 3, pp. 281–304, 1992, doi: 10.1016/S0294-1449(16)30238-4.
D. Vassilev, “Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups,” Pacific J. Math., vol. 227, no. 2, pp. 361–397, 2006, doi: 10.2140/pjm.2006.227.361.
M. Willem, Minimax theorems, ser. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996, vol. 24, doi: 10.1007/978-1-4612-4146-1.
T.-F. Wu, “On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,” J. Math. Anal. Appl., vol. 318, no. 1, pp. 253–270, 2006, doi: 10.1016/j.jmaa.2005.05.057.
J. Zhang, “Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups,” Manuscripta Math., vol. 172, no. 1-2, pp. 1–29, 2023, doi: 10.1007/s00229-022-01406-x.
J. Zhang and T.-S. Hsu, “Nonlocal elliptic systems involving critical Sobolev-Hardy exponents and concave-convex nonlinearities,” Taiwanese J. Math., vol. 23, no. 6, pp. 1479–1510, 2019, doi: 10.11650/tjm/190109.
Similar Articles
- Saulius Minkevicius, Analysis of the Component-Based Reliability in Computer Networks , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Nicolas Raymond, Uniform spectral estimates for families of Schrödinger operators with magnetic field of constant intensity and applications , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Paul A. Milewski, The Forced Korteweg–de Vries Equation as a Model for Waves Generated by Topography , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Messaoud Bounkhel, Arc-wise Essentially Tangentially Regular Set-valued Mappings and their Applications to Nonconvex Sweeping Process , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. Echarghaoui et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










