Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses
- Alka Chadha alkachaddha03@gmail.com
- Dwijendra N Pandey dwij.iitk@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462015000100002Abstract
This paper deals with periodic BVP for integer/fractional order differential equations with a deviated argument and integrable impulses in arbitrary Banach space X for which the impulses are not instantaneous. By utilizing fixed point theorems, we firstly establish the existence and uniqueness of the mild solution for the integer order differential system and secondly obtain the existence results for the mild solution to the fractional order differential system. Also at the end, we present some examples to show the effectiveness of the discussed abstract theory.
Keywords
Most read articles by the same author(s)
- Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
Similar Articles
- Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Gradimir V. Milovanović, Abdullah Mir, Adil Hussain, Estimates for the polar derivative of a constrained polynomial on a disk , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
You may also start an advanced similarity search for this article.