On certain functional equation in semiprime rings and standard operator algebras
-
Nejc Sirovnik
nejc.sirovnik@uni-mb.si
Downloads
Abstract
The main purpose of this paper is to prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let L(X) be the algebra of all bounded linear operators on X and let A(X) ⊆ L(X) be a standard operator algebra. Suppose there exists a linear mapping D : A(X) → L(X) satisfying the relation 2D(An) = D(An−1 )A+An−1D(A)+D(A)An−1+AD(An−1 ) for all A ∈ A(X), where n ≥ 2 is some fixed integer. In this case D is of the form D(A) = [A, B] for all A ∈ A(X) and some fixed B ∈ L(X), which means that D is a linear derivation. In particular, D is continuous.
Keywords
Most read articles by the same author(s)
- Maja Fosner, Benjamin Marcen, Nejc Sirovnik, On centralizers of standard operator algebras with involution , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
Similar Articles
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Sirkka-Liisa Eriksson, Heikki Orelma, A simple construction of a fundamental solution for the extended Weinstein equation , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Sever Silvestru Dragomir, Eder Kikianty, Perturbed weighted trapezoid inequalities for convex functions with applications , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.











