Homogeneous Besov spaces associated with the spherical mean operator
-
L.T. Rachdi
ahlemrouz@yahoo.fr
-
A. Rouz
ahlemrouz@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000200001Abstract
We define and study homogeneous Besov spaces associated with the spherical mean operator. We establish some results of completeness, continuous embeddings and density of subspaces. Next, we define a discrete equivalent norm on this space and we give other properties.
Keywords
Similar Articles
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Paolo D‘alessandro, An immediate derivation of maximum principle in Banach spaces, assuming reflexive input and state spaces , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Anjali Goswami, Special recurrent transformation in an NPR-Finsler space , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the inverse Laplace transform for rational functions vanishing at infinity , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- José Sánchez Henriquez, The ð‘‰â‚€ property in Banach Lattices , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Fethi Soltani, Slim Ben Rejeb, Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Chirine Chettaoui, An other uncertainty principle for the Hankel transform , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Manoj Bhardwaj, Alexander V. Osipov, Some observations on a clopen version of the Rothberger property , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2011-06-01
How to Cite
[1]
L. Rachdi and A. Rouz, “Homogeneous Besov spaces associated with the spherical mean operator”, CUBO, vol. 13, no. 2, pp. 1–35, Jun. 2011.
Issue
Section
Articles