Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations
-
Bo Zhang
bzhang@uncfsu.edu
Downloads
Abstract
It is well-known that Liapunov‘s direct method has been used very effectively for differential equations. The method has not, however, been used with much success on integral equations until recently. The reason for this lies in the fact that it is very difficult to relate the derivative of a scalar function to the unknown non-differentiable solution of an integral equation. In this paper, we construct a Liapunov functional for a system of nonlinear integral equations. From that Liapunov functional we are able to deduce conditions for boundedness and global attractivity of solutions. As in the case for differential equations, once the Liapunov function is constructed, we can take full advantage of its simplicity in qualitative analysis.
Keywords
Most read articles by the same author(s)
- T. A. Burton, Bo Zhang, Bounded and periodic solutions of integral equations , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Bo Zhang, Periodicity in Dissipative-Repulsive Systems of Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
Similar Articles
- Manuel Pinto, Nonlinear Impulsive Differential Systems , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Heriberto Román, Arturo Flores, On the level-convergence and fuzzy integration , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Youssef N. Raffoul, Ernest Yankson, Positive periodic solutions of functional discrete systems with a parameter , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang, Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.