Odd Harmonious Labeling of Some Classes of Graphs
-
P. Jeyanthi
jeyajeyanthi@rediffmail.com
-
S. Philo
lavernejudia@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000300299Abstract
A graph \(G(p,q)\) is said to be odd harmonious if there exists an injection \(f: V(G)\rightarrow\left\{0, 1, 2,\cdots,2q-1\right\}\) such that the induced function \(f^{*}: E(G)\rightarrow\left\{1, 3,\cdots,2q-1\right\}\) defined by \(f^{*}(uv) = f(u)+ f(v)\) is a bijection. In this paper we prove that \(T_p\)- tree, \(T\hat\circ P_m\), \(T\hat\circ 2P_m\), regular bamboo tree, \(C_n\hat\circ P_m\), \(C_n\hat\circ 2P_m\) and subdivided grid graphs are odd harmonious.
Keywords
J. A. Gallian, “A dynamic survey of graph labeling”, The Electronic Journal of Combinatorics, #DS6, 2019.
R. L. Graham and N. J. A. Sloane, “On additive bases and harmonious graphs”, SIAM J. Algebraic Discrete Methods, vol. 1, no. 4, pp. 382–404, 1980.
F. Harary, Graph theory, Addison-Wesley, Massachusetts, 1972.
S. M. Hegde and S. Shetty, “On graceful trees”, Appl. Math. E-Notes, vol. 2, pp. 192–197, 2002.
P. Jeyanthi, S.Philo and Kiki A. Sugeng, “Odd harmonious labeling of some new families of graphs”, SUT Journal of Mathematics, vol. 51, no. 2, pp. 181–193, 2015.
P. Jeyanthi and S. Philo, “Odd harmonious labeling of some cycle related graphs”, Proyecciones Journal of Mathematics, vol. 35, no. 1, pp. 85–98, 2016.
P. Jeyanthi and S. Philo, “Odd harmonious labeling of plus graphs”, Bull. Int. Math. Virtual Inst., vol. 7, no. 3, pp. 515–526, 2017.
P. Jeyanthi, S. Philo and M. K. Siddiqui, “Odd harmonious labeling of super subdivision graphs”, Proyecciones Journal of Mathematics, vol. 38, no. 1, pp. 1–11, 2019.
P. Jeyanthi and S. Philo, “Odd harmonious labeling of subdivided shell graphs”, International Journal of Computer Sciences and Engineering, vol. 7, no. 5, pp. 77–80, 2019.
P. Jeyanthi and S. Philo, “Odd harmonious labeling of certain graphs”, Journal of Applied Science and Computations, vol. 6 no. 4, pp. 1224–1232, 2019.
P. Jeyanthi and S. Philo, “Some results on odd harmonious labeling of graphs”, Bull. Int. Math. Virtual Inst., vol. 9, no. 3, pp. 567–576, 2019.
P. Jeyanthi and S. Philo, “Odd harmonious labeling of some new graphs”, Southeast Asian Bull. Math., vol. 43, no. 4, pp. 509–523, 2019.
P. Jeyanthi, S. Philo and M. Youssef, “Odd harmonious labeling of grid graph”, Proyecciones Journal of Mathematics, vol. 38, no. 3, pp. 411–429, 2019.
Z. H. Liang and Z. L. Bai, “On the odd harmonious graphs with applications”, J. Appl. Math. Comput., vol. 29, no. 1–2, pp. 105–116, 2009.
G. Pooranam, R. Vasuki and S. Suganthi, “Even vertex odd mean labeling of transformed trees”, SUT J. Math., vol. 52, no. 2, pp. 117–131, 2016.
V. Ramalakshmi, C. Sekar, “One modulo N gracefulness of regular bamboo tree and coconut tree”, International Journal on Applications of Graph Theory in wireless Ad Hoc Networks and Sensor Networks, vol. 6, no. 2, pp. 1–10, 2014.
P. Selvaraju, P. Balaganesan and J.Renuka, “Odd harmonious labeling of some path related graphs”, International J. of Math. Sci. and Engg. Appls., vol. 7, no. III, pp. 163–170, 2013.
S. K. Vaidya and N. H. Shah, “Some new odd harmonious graphs”, International Journal of Mathematics and Soft Computing, vol. 1, pp. 9–16, 2011.
S. K. Vaidya, N. H. Shah, “Odd harmonious labeling of some graphs”, International J.Math. Combin., vol. 3, pp. 105–112, 2012.
Most read articles by the same author(s)
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- P. Jeyanthi, K. Jeya Daisy, Andrea SemaniÄová-feňovÄíková, \(Z_k\)-magic labeling of path union of graphs , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- P. Jeyanthi, A. Maheswari, Odd Vertex Equitable Even Labeling of Cycle Related Graphs , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
Similar Articles
- Sóstenes Lins, Valdenberg Silva, On Maps with a Single Zigzag , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Colette Anné, Anne-Marie Charbonnel, Bohr-Sommerfeld conditions for several commuting Hamiltonians , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- A. Rodkina, On Asymptotic Stability of Nonlinear Stochastic Systems with Delay , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Cheok Choi, Gen Nakamura, Kenji Shirota, Variational approach for identifying a coefficient of the wave equation , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Saeid Jafari, Raja Mohammad Latif, Seithuti P. Moshokoa, A note on generalized topological spaces and preorder , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Saharon Shelah, On λ strong homogeneity existence for cofinality logic , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Takashi Noiri, Valeriu Popa, A note on modifications of \(rg\)-closed sets in topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.