Curves in low dimensional projective spaces with the lowest ranks
-
Edoardo Ballico
ballico@science.unitn.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000300379Abstract
Let \(X\subset {\mathbb P}^r\) be an integral and non-degenerate curve. For each \(q\in {\mathbb P}^r\) the \(X\)-rank \(r_X(q)\) of \(q\) is the minimal number of points of \(X\) spanning \(q\). A general point of \({\mathbb P}^r\) has \(X\)-rank \(\lceil (r+1)/2\rceil\). For \(r=3\) (resp. \(r=4\)) we construct many smooth curves such that \(r_X(q) \le 2\) (resp. \(r_X(q) \le 3\)) for all \(q\in {\mathbb P}^r\) (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo's upper bound for the arithmetic genus.
Keywords
B. Adlandsvik, “Joins and higher secant varieties”, Math. Scand., vol. 62, pp. 213–222, 1987.
G. Blekherman, Z. Teitler, “On maximum, typical and generic ranks”, Math. Ann., vol. 362, no. 3-4, pp. 1231–1031, 2015.
J. Buczyn Ìski, K. Han, M. Mella, Z. Teitler, “On the locus of points of high rank”, Eur. J. Math., vol. 4, pp. 113–136, 2018.
I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012.
J. P. Griffiths, J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York, 1978.
J. Harris (with D. Eisenbud): Curves in projective space, Les Presses de l‘Université de Montréal, Montréal, 1982.
R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977.
J. M. Landsberg, Z. Teitler, “On the ranks and border ranks of symmetric tensors,” Found. Comput. Math., vol. 10, pp. 339–366, 2010.
P. Piene, “Cuspidal projections of space curves”, Math. Ann., vol. 256, no. 1, pp. 95–119, 1981.
A. Tannenbaum, “Families of algebraic curves with nodes”, Composition Math., vol. 41, no. 1, pp. 107–126, 1980.
Most read articles by the same author(s)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\) , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Sepide Hajighasemi, Shirin Hejazian, Surjective maps preserving the reduced minimum modulus of products , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Sever Silvestru Dragomir, Eder Kikianty, Perturbed weighted trapezoid inequalities for convex functions with applications , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abdoul Aziz Kalifa Dianda, Khalil Ezzinbi, Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: In Press
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.