Curves in low dimensional projective spaces with the lowest ranks
-
Edoardo Ballico
ballico@science.unitn.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000300379Abstract
Let \(X\subset {\mathbb P}^r\) be an integral and non-degenerate curve. For each \(q\in {\mathbb P}^r\) the \(X\)-rank \(r_X(q)\) of \(q\) is the minimal number of points of \(X\) spanning \(q\). A general point of \({\mathbb P}^r\) has \(X\)-rank \(\lceil (r+1)/2\rceil\). For \(r=3\) (resp. \(r=4\)) we construct many smooth curves such that \(r_X(q) \le 2\) (resp. \(r_X(q) \le 3\)) for all \(q\in {\mathbb P}^r\) (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo's upper bound for the arithmetic genus.
Keywords
B. Adlandsvik, “Joins and higher secant varieties”, Math. Scand., vol. 62, pp. 213–222, 1987.
G. Blekherman, Z. Teitler, “On maximum, typical and generic ranks”, Math. Ann., vol. 362, no. 3-4, pp. 1231–1031, 2015.
J. Buczyn Ìski, K. Han, M. Mella, Z. Teitler, “On the locus of points of high rank”, Eur. J. Math., vol. 4, pp. 113–136, 2018.
I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012.
J. P. Griffiths, J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York, 1978.
J. Harris (with D. Eisenbud): Curves in projective space, Les Presses de l‘Université de Montréal, Montréal, 1982.
R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977.
J. M. Landsberg, Z. Teitler, “On the ranks and border ranks of symmetric tensors,” Found. Comput. Math., vol. 10, pp. 339–366, 2010.
P. Piene, “Cuspidal projections of space curves”, Math. Ann., vol. 256, no. 1, pp. 95–119, 1981.
A. Tannenbaum, “Families of algebraic curves with nodes”, Composition Math., vol. 41, no. 1, pp. 107–126, 1980.
Most read articles by the same author(s)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\) , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- E. Ballico, Postulation of general unions of lines and +lines in positive characteristic , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- A. Kaboré, S. Ouaro, Anisotropic problem with non-local boundary conditions and measure data , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- H. Özlem Güney, G. Murugusundaramoorthy, K. Vijaya, Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- U. Traoré, Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.