Extension of exton's hypergeometric function \(K_{16}\)
-
Ahmed Ali Atash
ah-a-atash@hotmail.com
-
Maisoon Ahmed Kulib
maisoonahmedkulib@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300489Abstract
The purpose of this article is to introduce an extension of Exton's hypergeometric function \(K_{16}\) by using the extended beta function given by Özergin et al. [11]. Some integral representations, generating functions, recurrence relations, transformation formulas, derivative formula and summation formulas are obtained for this extended function. Some special cases of the main results of this paper are also considered.
Keywords
P. Agarwal, J. Choi and S. Jain, “Extended hypergeometric functions of two and three variables”, Commun. Korean Math. Soc., vol. 30, no. 4, pp. 403–414, 2015.
R. P. Agarwal, M. J. Luo and P. Agarwal, “On the extended Appell-Lauricella hypergeometric functions and their applications”, Filomat, vol. 31, no. 12, pp. 3693–3713, 2017.
A. Çetinkaya, I. O. Kıymaz, P. Agarwal and R. Agarwal, “A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators”, Adv. Difference Equ., vol. 2018, paper no. 156, pp. 1–11, 2018.
R. C. Singh Chandel and A. Tiwari, “Generating relations involving hypergeometric functions of four variables”, Pure Appl. Math. Sci., vol. 36, no. 1-2, pp. 15–25, 1991.
M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, “Extension of Euler‘s beta function”, J. Comp. Appl. Math., vol. 78, no. 1, pp. 19–32, 1997.
M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, “Extended hypergeometric and confluent hypergeometric functions”, Appl. Math. Comp., vol. 159, no. 2, pp. 589–602, 2004.
H. Exton, Multiple hypergeometric functions and applications, New York: Halsted Press, 1976.
H. Liu, “Some generating relations for extended Appell‘s and Lauricella‘s hypergeometric functions”, Rocky Mountain J. Math., vol. 44, no. 6, pp. 1987–2007, 2014.
Y. L. Luke, The special functions and their approximations, New York: Academic Press, 1969.
M. A. Özarslan and E. Özergin, “Some generating relations for extended hypergeometric functions via generalized fractional derivative operator”, Math. Comput. Modelling, vol. 52, no. 9-10, pp. 1825–1833, 2010.
E. Özergin, M. A. Özarslan, and A. Altin, “Extension of gamma, beta and hypergeometric functions”, J. Comp. Appl. Math., vol. 235, no. 16, pp. 4601–4610, 2011.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric Series, New York: Halsted Press, 1985.
H. M. Srivastava and H. L. Manocha, A treatise on generating functions, New York: Halsted Press, 1984.
X. Wang, “Recursion formulas for Appell functions”, Integral Transforms Spec. Funct., vol. 23, no. 6, pp. 421–433, 2012.
Similar Articles
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- M. H. Saleh, S. M. Amer, M. H. Ahmed, The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert Kernel , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Shruti A. Kalloli, José Vanterler da C. Sousa, Kishor D. Kucche, On the \(\Phi\)-Hilfer iterative fractional differential equations , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Gradimir V. Milovanović, Abdullah Mir, Adil Hussain, Estimates for the polar derivative of a constrained polynomial on a disk , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- M. Haviar, S. Kurtulík, A new class of graceful graphs: \(k\)-enriched fan graphs and their characterisations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.











