Several inequalities for an integral transform of positive operators in Hilbert spaces with applications
-
S. S. Dragomir
sever.dragomir@vu.edu.au
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.195Abstract
For a continuous and positive function \(w\left( \lambda \right) ,\) \(\lambda>0\) and \(\mu \) a positive measure on \((0,\infty )\) we consider the following Integral Transform
\[ \begin{equation*} \mathcal{D}\left( w,\mu \right) \left( T\right) :=\int_{0}^{\infty }w\left(\lambda \right) \left( \lambda +T\right)^{-1}d\mu \left( \lambda \right) , \end{equation*} \]
where the integral is assumed to exist for \(T\) a postive operator on a complex Hilbert space \(H\).
We show among others that, if \( \beta \geq A \geq \alpha > 0, \, B > 0 \) with \( M \geq B-A \geq m > 0 \) for some constants \( \alpha, \beta, m, M \), then
\[ \begin{align*} 0 & \leq \frac{m^{2}}{M^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \\ & \leq \frac{m^{2}}{M}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \left( B-A\right)^{-1} \\ & \leq \mathcal{D}\left( w,\mu \right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right) \\ & \leq \frac{M^{2}}{m}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1} \\ & \leq \frac{M^{2}}{m^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right]. \end{align*} \]
Some examples for operator monotone and operator convex functions as well as for integral transforms \(\mathcal{D}\left( \cdot ,\cdot \right) \) related to the exponential and logarithmic functions are also provided.
Keywords
Mathematics Subject Classification:
R. Bhatia, Matrix analysis. New York, NY, USA: Springer-Verlag, 1997.
J. I. Fujii and Y. Seo, “On parametrized operator means dominated by power ones”, Sci. Math., vol. 1, no. 3, pp. 301–306, 1998.
T. Furuta, “Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation”, Linear Algebra Appl., vol. 429, no. 5–6, pp. 972–980, 2008.
T. Furuta, “Precise lower bound of f(A) − f(B) for A > B > 0 and non-constant operator monotone function f on [0, ∞)”, J. Math. Inequal., vol. 9, no. 1, pp. 47–52, 2015.
E. Heinz, “Beiträge zur Störungstheorie der Spektralzerlegun”, Math. Ann., vol. 123, pp. 415–438, 1951.
K. Löwner, “Über monotone Matrixfunktionen”, Math. Z., vol. 38, no. 1, pp. 177–216, 1931.
M. S. Moslehian and H. Najafi, “An extension of the Löwner-Heinz inequality”, Linear Algebra Appl., vol. 437, no. 9, pp. 2359–2365, 2012.
H. Zuo and G. Duan, “Some inequalities of operator monotone functions”, J. Math. Inequal., vol. 8, no. 4, pp. 777–781, 2014.
Most read articles by the same author(s)
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abdoul Aziz Kalifa Dianda, Khalil Ezzinbi, Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. S. Dragomir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











