On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight
-
Seyed Mostafa Sajjadi
sjadysydmstfy@gmail.com
-
Ghasem Alizadeh Afrouzi
afrouzi@umz.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.107Abstract
This paper is concerned with a class of fractional \(p(x,y)-\)Kirchhoff type problems with Dirichlet boundary data along with indefinite weight of the following form
\begin{equation*}
\left\lbrace\begin{array}{ll}
M\left(\int_{Q}\frac{1}{p(x,y)}\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}\,dx\,dy\right)\\
(-\triangle_{p(x)})^s+|u(x)|^{q(x)-2}u(x) & \\
=\lambda V(x)|u(x)|^{r(x)-2}u(x)& \text{in }\Omega,\\
u=0, & \text{in }\mathbb{R}^N\Omega.
\end{array}\right.
\end{equation*}
By means of direct variational approach and Ekeland’s variational principle, we investigate the existence of nontrivial weak solutions for the above problem in case of the competition between the growth rates of functions \(p\) and \(r\) involved in above problem, this fact is essential in describing the set of eigenvalues of this problem.
Keywords
Mathematics Subject Classification:
S. Antontsev, F. Miranda, and L. Santos, “Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism,” J. Math. Anal. Appl., vol. 440, no. 1, pp. 300–322, 2016, doi: 10.1016/j.jmaa.2016.03.045.
E. Azroul, A. Benkirane, and M. Shimi, “Eigenvalue problems involving the fractional p(x)-Laplacian operator,” Adv. Oper. Theory, vol. 4, no. 2, pp. 539–555, 2019, doi: 10.15352/aot.1809-1420.
E. Azroul, A. Benkirane, M. Shimi, and M. Srati, “On a class of fractional p(x)-Kirchhoff type problems,” Appl. Anal., vol. 100, no. 2, pp. 383–402, 2021, doi: 10.1080/00036811.2019.1603372.
A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379–389, 2018, doi: 10.3934/dcdss.2018021.
N. T. Chung, “Eigenvalue problems for fractional p(x,y)-Laplacian equations with indefinite weight,” Taiwanese J. Math., vol. 23, no. 5, pp. 1153–1173, 2019, doi: 10.11650/tjm/190404.
F. J. S. A. Corrêa and G. M. Figueiredo, “On a p-Kirchhoff equation via Krasnoselskii’s genus,” Appl. Math. Lett., vol. 22, no. 6, pp. 819–822, 2009, doi: 10.1016/j.aml.2008.06.042.
I. Ekeland, “On the variational principle,” J. Math. Anal. Appl., vol. 47, pp. 324–353, 1974, doi: 10.1016/0022-247X(74)90025-0.
X. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω),” J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001, doi: 10.1006/jmaa.2000.7617.
U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qual. Theory Differ. Equ., 2017, Art. ID 76, doi: 10.14232/ejqtde.2017.1.76.
Most read articles by the same author(s)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Matt Insall, Substitutions of the Independent Variable in Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Spencer Bloch, Helene Esnault, Congruences for the Number of Rational Points, Hodge Type and Motivic Conjectures for Fano Varieties , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Laszlo Kapolyi, Ferenc Szidarovszki, Control of Dynamic Oligopsonies with Production factors , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Consuelo Martinez, Algebra no conmutativa: Del finito al Infinito , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- David G. Costa, A First Encounter with Variational Methods in Differential Equations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: In Press
<< < 10 11 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. M. Sajjadi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.