Some norm inequalities for accretive Hilbert space operators
-
Baharak Moosavi
baharak_moosavie@yahoo.com
-
Mohsen Shah Hosseini
mohsen_shahhosseini@yahoo.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.327Abstract
New norm inequalities for accretive operators on Hilbert space are given. Among other inequalities, we prove that if \(A, B \in \mathbb{B(H)}\) and \(B\) is self-adjoint and also \(C_{m,M}(iAB)\) is accretive, then
\begin{eqnarray*}
\frac{4 \sqrt{Mm}}{M+m} \Vert AB\Vert \leq \omega(AB-BA^*),\end{eqnarray*}
where \(M\) and \(m\) are positive real numbers with \(M > m\) and \(C_{m,M}(A) = (A^* - mI)(MI - A)\). Also, we show that if \(C_{m,M}(A)\) is accretive and \((M-m) \leq k \Vert A \Vert\), then
\begin{eqnarray*}
\omega(AB) \leq ( 2 + k)\omega(A)\omega(B).\end{eqnarray*}
Keywords
Mathematics Subject Classification:
S. S. Dragomir, “Reverse inequalities for the numerical radius of linear operators in Hilbert spaces,” Bull. Austral. Math. Soc., vol. 73, no. 2, pp. 255–262, 2006, doi: 10.1017/S0004972700038831.
S. S. Dragomir, “Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces,” Tamkang J. Math., vol. 39, no. 1, pp. 1–7, 2008.
S. S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, ser. SpringerBriefs in Mathematics. Springer, Cham, 2013, doi: 10.1007/978-3-319-01448-7.
C. K. Fong and J. A. R. Holbrook, “Unitarily invariant operator norms,” Canadian J. Math., vol. 35, no. 2, pp. 274–299, 1983, doi: 10.4153/CJM-1983-015-3.
I. H. Gümüş, H. R. Moradi, and M. Sababheh, “Operator inequalities via accretive transforms,” Hacet. J. Math. Stat., vol. 53, no. 1, pp. 40–52, 2024, doi: 10.15672/hujms.1160533.
J. A. R. Holbrook, “Multiplicative properties of the numerical radius in operator theory,” J. Reine Angew. Math., vol. 237, pp. 166–174, 1969, doi: 10.1515/crll.1969.237.166.
F. Kittaneh, “Numerical radius inequalities for Hilbert space operators,” Studia Math., vol. 168, no. 1, pp. 73–80, 2005, doi: 10.4064/sm168-1-5.
B. Moosavi and M. Shah Hosseini, “New lower bound for numerical radius for off-diagonal 2 × 2 matrices,” J. Linear Topol. Algebra, vol. 13, no. 1, pp. 13–18, 2024, doi: 10.30495/jlta.2024.2002723.1602.
E. Nikzat and M. E. Omidvar, “Refinements of numerical radius inequalities using the Kantorovich ratio,” Concr. Oper., vol. 9, no. 1, pp. 70–74, 2022, doi: 10.1515/conop-2022-0128.
M. Shah Hosseini and B. Moosavi, “Some numerical radius inequalities for products of Hilbert space operators,” Filomat, vol. 33, no. 7, pp. 2089–2093, 2019, doi: 10.2298/fil1907089h.
M. Shah Hosseini, B. Moosavi, and H. R. Moradi, “An alternative estimate for the numerical radius of Hilbert space operators,” Math. Slovaca, vol. 70, no. 1, pp. 233–237, 2020, doi: 10.1515/ms-2017-0346.
M. Shah Hosseini and M. E. Omidvar, “Some inequalities for the numerical radius for Hilbert space operators,” Bull. Aust. Math. Soc., vol. 94, no. 3, pp. 489–496, 2016, doi: 10.1017/S0004972716000514.
J. G. Stampfli, “The norm of a derivation,” Pacific J. Math., vol. 33, pp. 737–747, 1970.
T. Yamazaki, “On upper and lower bounds for the numerical radius and an equality condition,” Studia Math., vol. 178, no. 1, pp. 83–89, 2007, doi: 10.4064/sm178-1-5.
A. Zamani, “Some lower bounds for the numerical radius of Hilbert space operators,” Adv. Oper. Theory, vol. 2, no. 2, pp. 98–107, 2017, doi: 10.22034/aot.1612-1076.
A. Zamani, “A-numerical radius inequalities for semi-Hilbertian space operators,” Linear Algebra Appl., vol. 578, pp. 159–183, 2019, doi: 10.1016/j.laa.2019.05.012.
A. Zamani, M. S. Moslehian, Q. Xu, and C. Fu, “Numerical radius inequalities concerning with algebra norms,” Mediterr. J. Math., vol. 18, no. 2, 2021, Art. ID 38, doi: 10.1007/s00009-020- 01665-6.
Similar Articles
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- L. P. Castro, A. S. Silva, Fredholm property of matrix Wiener-Hopf plus and minus Hankel operators with semi-almost periodic symbols , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 11 12 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Moosavi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











