Some norm inequalities for accretive Hilbert space operators
-
Baharak Moosavi
baharak_moosavie@yahoo.com
-
Mohsen Shah Hosseini
mohsen_shahhosseini@yahoo.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.327Abstract
New norm inequalities for accretive operators on Hilbert space are given. Among other inequalities, we prove that if \(A, B \in \mathbb{B(H)}\) and \(B\) is self-adjoint and also \(C_{m,M}(iAB)\) is accretive, then
\begin{eqnarray*}
\frac{4 \sqrt{Mm}}{M+m} \Vert AB\Vert \leq \omega(AB-BA^*),\end{eqnarray*}
where \(M\) and \(m\) are positive real numbers with \(M > m\) and \(C_{m,M}(A) = (A^* - mI)(MI - A)\). Also, we show that if \(C_{m,M}(A)\) is accretive and \((M-m) \leq k \Vert A \Vert\), then
\begin{eqnarray*}
\omega(AB) \leq ( 2 + k)\omega(A)\omega(B).\end{eqnarray*}
Keywords
Mathematics Subject Classification:
S. S. Dragomir, “Reverse inequalities for the numerical radius of linear operators in Hilbert spaces,” Bull. Austral. Math. Soc., vol. 73, no. 2, pp. 255–262, 2006, doi: 10.1017/S0004972700038831.
S. S. Dragomir, “Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces,” Tamkang J. Math., vol. 39, no. 1, pp. 1–7, 2008.
S. S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, ser. SpringerBriefs in Mathematics. Springer, Cham, 2013, doi: 10.1007/978-3-319-01448-7.
C. K. Fong and J. A. R. Holbrook, “Unitarily invariant operator norms,” Canadian J. Math., vol. 35, no. 2, pp. 274–299, 1983, doi: 10.4153/CJM-1983-015-3.
I. H. Gümüş, H. R. Moradi, and M. Sababheh, “Operator inequalities via accretive transforms,” Hacet. J. Math. Stat., vol. 53, no. 1, pp. 40–52, 2024, doi: 10.15672/hujms.1160533.
J. A. R. Holbrook, “Multiplicative properties of the numerical radius in operator theory,” J. Reine Angew. Math., vol. 237, pp. 166–174, 1969, doi: 10.1515/crll.1969.237.166.
F. Kittaneh, “Numerical radius inequalities for Hilbert space operators,” Studia Math., vol. 168, no. 1, pp. 73–80, 2005, doi: 10.4064/sm168-1-5.
B. Moosavi and M. Shah Hosseini, “New lower bound for numerical radius for off-diagonal 2 × 2 matrices,” J. Linear Topol. Algebra, vol. 13, no. 1, pp. 13–18, 2024, doi: 10.30495/jlta.2024.2002723.1602.
E. Nikzat and M. E. Omidvar, “Refinements of numerical radius inequalities using the Kantorovich ratio,” Concr. Oper., vol. 9, no. 1, pp. 70–74, 2022, doi: 10.1515/conop-2022-0128.
M. Shah Hosseini and B. Moosavi, “Some numerical radius inequalities for products of Hilbert space operators,” Filomat, vol. 33, no. 7, pp. 2089–2093, 2019, doi: 10.2298/fil1907089h.
M. Shah Hosseini, B. Moosavi, and H. R. Moradi, “An alternative estimate for the numerical radius of Hilbert space operators,” Math. Slovaca, vol. 70, no. 1, pp. 233–237, 2020, doi: 10.1515/ms-2017-0346.
M. Shah Hosseini and M. E. Omidvar, “Some inequalities for the numerical radius for Hilbert space operators,” Bull. Aust. Math. Soc., vol. 94, no. 3, pp. 489–496, 2016, doi: 10.1017/S0004972716000514.
J. G. Stampfli, “The norm of a derivation,” Pacific J. Math., vol. 33, pp. 737–747, 1970.
T. Yamazaki, “On upper and lower bounds for the numerical radius and an equality condition,” Studia Math., vol. 178, no. 1, pp. 83–89, 2007, doi: 10.4064/sm178-1-5.
A. Zamani, “Some lower bounds for the numerical radius of Hilbert space operators,” Adv. Oper. Theory, vol. 2, no. 2, pp. 98–107, 2017, doi: 10.22034/aot.1612-1076.
A. Zamani, “A-numerical radius inequalities for semi-Hilbertian space operators,” Linear Algebra Appl., vol. 578, pp. 159–183, 2019, doi: 10.1016/j.laa.2019.05.012.
A. Zamani, M. S. Moslehian, Q. Xu, and C. Fu, “Numerical radius inequalities concerning with algebra norms,” Mediterr. J. Math., vol. 18, no. 2, 2021, Art. ID 38, doi: 10.1007/s00009-020- 01665-6.
Similar Articles
- Adrian Petrus¸el, Ioan A. Rus, Marcel Adrian S¸erban, Fixed Points for Operators on Generalized Metric Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Feng Qi, The extended mean values: Definition, Properties, Monotonicities, Comparison, Convexities, Generalizations, and Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- H. O. Fattorini, Sufficiency of the maximum principle for time optimality , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
<< < 12 13 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Moosavi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











