An identity related to derivations of standard operator algebras and semisimple H∗ -algebras
-
Irena Kosi-Ulbl
irena.kosi@uni-mb.si
-
Joso Vukman
joso.vukman@uni-mb.si
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100009Abstract
In this paper we prove the following result. Let X be a real or complex Banach space, let L(X) be the algebra of all bounded linear operators on X, and let A(X) ⊂ L(X) be a standard operator algebra. Suppose D : A(X) → L(X) is a linear mapping satisfying the relation
for all A ∈ A(X). In this case D is of the form D(A) = AB − BA, for all A ∈ A(X) and some B ∈ L(X), which means that D is a linear derivation. In particular, D is continuous. We apply this result, which generalizes a classical result of Chernoff, to semisimple H∗−algebras.
This research has been motivated by the work of Herstein [4], Chernoff [2] and Molnár [5] and is a continuation of our recent work [8] and [9]. Throughout, R will represent an associative ring. Given an integer n ≥ 2, a ring R is said to be n−torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0. Let A be an algebra over the real or complex field and let B be a subalgebra of A. A linear mapping D : B → A is called a linear derivation in case D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. In case we have a ring R an additive mapping D : R → R is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x,y ∈ R and is called a Jordan derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R. A derivation D is inner in case there exists a ∈ R, such that D(x) = ax − xa holds for all x ∈ R. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [4] asserts that any Jordan derivation on a prime ring of characteristic different from two is a derivation. Cusack [3] generalized Herstein‘s result to 2−torsion free semiprime rings. Let us recall that a semisimple H∗−algebra is a semisimple Banach ∗−algebra whose norm is a Hilbert space norm such that (x, yz∗) = (xz, y) = (z, x∗ y) is fulfilled for all x,y, z ∈ A (see [1]). Let X be a real or complex Banach space and let L(X) and F(X) denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in L(X), respectively. An algebra A(X) ⊂ L(X) is said to be standard in case F(X) ⊂ A(X). Let us point out that any standard algebra is prime, which is a consequence of Hahn-Banach theorem.
Keywords
Most read articles by the same author(s)
- Joso Vukman, Irena Kosi-Ulbl, On Two-Sided Centralizers of Rings and Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
Similar Articles
- Jiri Rosický, Injectivity and accessible categories , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Juan Leiva Vivar, Clasificación de las métricas invariantes a izquierda en grupos Lie , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Heriberto Román, Arturo Flores, On the level-convergence and fuzzy integration , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Rodolfo Baeza, Resumen de Comunicaciones , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Lionel Henríquez Barrientos, Solución de la Cuártica , CUBO, A Mathematical Journal: No. 3 (1987): CUBO, Revista de Matemática
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Sushanta Kumar Mohanta, Common Fixed Point Results in C∗-Algebra Valued b-Metric Spaces Via Digraphs , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Yogesh J. Bagul, Christophe Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
<< < 16 17 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.











