Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces
-
Sehie Park
shpark@math.snu.ac.kr
Downloads
Abstract
Various types of ðœ™A-spaces (X, D; {ðœ™A}A∈〈D〉) are simply G-convex spaces. Various types of generalized KKM maps on ðœ™A-spaces are simply KKM maps on G-convex spaces. Therefore, our G-convex space theory can be applied to various types of ðœ™A-spaces. As such examples, we obtain KKM type theorems and a very general fixed point theorem on ðœ™A-spaces.
Keywords
Similar Articles
- Jonas Gomes, Luiz Velho, Color representation: Theory and Techniques , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Radu Miron, Lagrange and Hamilton Spaces: Geometrical Models in Mechanics, new Theoretical Physics, Variational Calculus and Optimal Control , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Heriberto Román, Arturo Flores, On the level-convergence and fuzzy integration , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Oscar Rojo J., Ricardo Soto, On the construction of Jacobi matrices from spectral data , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Rodolfo Baeza, Resumen de Comunicaciones , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
<< < 16 17 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.











