Weak solutions to Neumann discrete nonlinear system of Kirchhoff type
-
Rodrigue Sanou
drigoaime@gmail.com
-
Idrissa Ibrango
ibrango2006@yahoo.fr
-
Blaise Koné
leizon71@yahoo.fr
-
Aboudramane Guiro
abouguiro@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000300075Abstract
We prove the existence of weak solutions for discrete nonlinear system of Kirchhoff type. We build some Hilbert spaces with suitable norms. We define the notion of weak solution corresponding to the problem (1.1). The proof of the main result is based on a minimization method of an energy functional J.
Keywords
[1] G. Bonanno, G. Molica Bisci and V. Radulescu; Arbitrarity small weak solutions for nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatshefte fur Mathematik, vol. 165, no. 3-4, pp. 305-318, 2012.
[2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[3] A. Castro and R. Shivaji; Non-negative solutions for a class of radically symmetric non-positone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740, 1989.
[4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], University of Freiburg, 2002.
[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011).
[7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11.
[8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567.
[9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001.
[10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15.
[12] G. Zhang and S. Liu; On a class of semi-positone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.
[13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281.
[14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66.
[2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[3] A. Castro and R. Shivaji; Non-negative solutions for a class of radically symmetric non-positone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740, 1989.
[4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], University of Freiburg, 2002.
[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011).
[7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11.
[8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567.
[9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001.
[10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15.
[12] G. Zhang and S. Liu; On a class of semi-positone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.
[13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281.
[14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66.
Most read articles by the same author(s)
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Aboudramane Guiro, Idrissa Ibrango, Existence of solutions for discrete boundary value problems with second order dependence on parameters , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
Similar Articles
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Toka Diagana, Khalil Ezzinbi, Mohsen Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Derek Hacon, Jordan normal form via ODE's , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Najja Al-Islam, Diagana space and the gas absorption model , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- M.H. Saleh, D.Sh. Mohammed, Numerical solution of singular and non singular integral equations , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2020-01-20
How to Cite
[1]
R. Sanou, I. Ibrango, B. Koné, and A. Guiro, “Weak solutions to Neumann discrete nonlinear system of Kirchhoff type”, CUBO, vol. 21, no. 3, pp. 75–91, Jan. 2020.
Issue
Section
Articles











