Weak solutions to Neumann discrete nonlinear system of Kirchhoff type
-
Rodrigue Sanou
drigoaime@gmail.com
-
Idrissa Ibrango
ibrango2006@yahoo.fr
-
Blaise Koné
leizon71@yahoo.fr
-
Aboudramane Guiro
abouguiro@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000300075Abstract
We prove the existence of weak solutions for discrete nonlinear system of Kirchhoff type. We build some Hilbert spaces with suitable norms. We define the notion of weak solution corresponding to the problem (1.1). The proof of the main result is based on a minimization method of an energy functional J.
Keywords
[2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[3] A. Castro and R. Shivaji; Non-negative solutions for a class of radically symmetric non-positone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740, 1989.
[4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], University of Freiburg, 2002.
[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011).
[7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11.
[8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567.
[9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001.
[10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15.
[12] G. Zhang and S. Liu; On a class of semi-positone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.
[13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281.
[14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66.
Most read articles by the same author(s)
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Aboudramane Guiro, Idrissa Ibrango, Existence of solutions for discrete boundary value problems with second order dependence on parameters , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
Similar Articles
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Frederico Furtado, Felipe Pereira, On the Scale Up Problem for Two-Phase Flow in Petroleum Reservoirs , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Mark A. Pinsky, Asymptotic Solutions of Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Daniele C. Struppa, Computational Algebraic Analysis of Systems Differential Equations , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Man Chun Leung, Concentration of solutions of non-linear elliptic equations involving critical Sobolev exponent , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- David G. Costa, A First Encounter with Variational Methods in Differential Equations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Ronald Grimmer, Min He, Fixed Point Theory and Nonlinear Periodic Systems , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Saroj Panigrahi, Sandip Rout, Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.











