Weak solutions to Neumann discrete nonlinear system of Kirchhoff type
-
Rodrigue Sanou
drigoaime@gmail.com
-
Idrissa Ibrango
ibrango2006@yahoo.fr
-
Blaise Koné
leizon71@yahoo.fr
-
Aboudramane Guiro
abouguiro@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000300075Abstract
We prove the existence of weak solutions for discrete nonlinear system of Kirchhoff type. We build some Hilbert spaces with suitable norms. We define the notion of weak solution corresponding to the problem (1.1). The proof of the main result is based on a minimization method of an energy functional J.
Keywords
[1] G. Bonanno, G. Molica Bisci and V. Radulescu; Arbitrarity small weak solutions for nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatshefte fur Mathematik, vol. 165, no. 3-4, pp. 305-318, 2012.
[2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[3] A. Castro and R. Shivaji; Non-negative solutions for a class of radically symmetric non-positone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740, 1989.
[4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], University of Freiburg, 2002.
[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011).
[7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11.
[8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567.
[9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001.
[10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15.
[12] G. Zhang and S. Liu; On a class of semi-positone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.
[13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281.
[14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66.
[2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[3] A. Castro and R. Shivaji; Non-negative solutions for a class of radically symmetric non-positone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740, 1989.
[4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], University of Freiburg, 2002.
[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011).
[7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11.
[8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567.
[9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001.
[10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15.
[12] G. Zhang and S. Liu; On a class of semi-positone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.
[13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281.
[14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66.
Most read articles by the same author(s)
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Aboudramane Guiro, Idrissa Ibrango, Existence of solutions for discrete boundary value problems with second order dependence on parameters , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
Similar Articles
- A. Aghajani, D. O'Regan, A. Shole Haghighi, Measure of noncompactness on Lp(RN) and applications , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- A. Rodkina, On Asymptotic Stability of Nonlinear Stochastic Systems with Delay , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Slawomir Kolodziej, The complex Monge-Ampére equation and methods of pluripotential theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Constantin Corduneanu, Some special classes of neutral functional differential equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Existence of solutions for discrete boundary value problems with second order dependence on parameters , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Manuel Pinto, Some Problems in Functional Differential Equations , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- C.M. Kirk, A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2020-01-20
How to Cite
[1]
R. Sanou, I. Ibrango, B. Koné, and A. Guiro, “Weak solutions to Neumann discrete nonlinear system of Kirchhoff type”, CUBO, vol. 21, no. 3, pp. 75–91, Jan. 2020.
Issue
Section
Articles











