A sub-elliptic system with strongly coupled critical terms and concave nonlinearities
-
Rachid Echarghaoui
rachid.echarghaoui@uit.ac.ma
-
Abdelouhab Hatimi
abdelouhab.hatimi@uit.ac.ma
-
Mohamed Hatimi
mohamed.hatimi@uit.ac.ma
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.595Abstract
In this work, we study the Nehari manifold and its application to the following sub-elliptic system involving strongly coupled critical terms and concave nonlinearities:
\[
\left\{
\begin{aligned}
-\Delta_{\mathbb{G}} u
&= \frac{\eta_{1}\alpha_{1}}{2^*}\,|u|^{\alpha_{1}-2}|v|^{\beta_{1}}u
+\frac{\eta_{2}\alpha_{2}}{2^*}\,|u|^{\alpha_{2}-2}|v|^{\beta_{2}}u
\\ &+\lambda\, g(z)\,|u|^{q-2}u,
&& z\in\Omega, \\
-\Delta_{\mathbb{G}} v
&= \frac{\eta_{1}\beta_{1}}{2^*}\,|u|^{\alpha_{1}}|v|^{\beta_{1}-2}v
+\frac{\eta_{2}\beta_{2}}{2^*}\,|u|^{\alpha_{2}}|v|^{\beta_{2}-2}v
\\ &+\mu\, h(z)\,|v|^{q-2}v,
&& z\in\Omega, \\
u &= v = 0, && z\in\partial\Omega,
\end{aligned}
\right.
\]
where \(\Omega\) is an open bounded subset of \(\mathbb{G}\) with smooth boundary, \(-\Delta_{\mathbb{G}}\) is the sub-Laplacian on a Carnot group \(\mathbb{G}\); \(\eta_1, \eta_2, \lambda, \mu\) are positive, \(\alpha_1+\beta_1=2^*\), \(\alpha_2+\beta_2=2^*\), \(1<q<2\), \(2^*=\frac{2Q}{Q-2}\) is the critical Sobolev exponent, and \(Q\) is the homogeneous dimension of \(\mathbb{G}\). By exploiting the Nehari manifold and variational methods, we prove that the system has at least two positive solutions.
Keywords
Mathematics Subject Classification:
C. O. Alves and Y. H. Ding, “Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity,” J. Math. Anal. Appl., vol. 279, no. 2, pp. 508–521, 2003, doi: 10.1016/S0022-247X(03)00026-X.
S. Benmouloud, R. Echarghaoui, and S. M. Sbaï, “Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities,” J. Math. Anal. Appl., vol. 396, no. 1, pp. 375–385, 2012, doi: 10.1016/j.jmaa.2012.05.078.
A. Bonfiglioli and F. Uguzzoni, “Nonlinear Liouville theorems for some critical problems on H-type groups,” J. Funct. Anal., vol. 207, no. 1, pp. 161–215, 2004, doi: 10.1016/S0022-1236(03)00138-1.
J.-M. Bony, “Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,” Ann. Inst. Fourier (Grenoble), vol. 19, pp. 277–304 xii, 1969.
K. J. Brown and T.-F. Wu, “A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function,” J. Math. Anal. Appl., vol. 337, no. 2, pp. 1326–1336, 2008, doi: 10.1016/j.jmaa.2007.04.064.
G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., vol. 13, no. 2, pp. 161–207, 1975, doi: 10.1007/BF02386204.
G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, ser. Mathematical Notes. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982, vol. 28.
N. Garofalo and D. Vassilev, “Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups,” Math. Ann., vol. 318, no. 3, pp. 453–516, 2000, doi: 10.1007/s002080000127.
T.-S. Hsu, “Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities,” Nonlinear Anal., vol. 71, no. 7-8, pp. 2688–2698, 2009, doi: 10.1016/j.na.2009.01.110.
T.-S. Hsu and H.-L. Lin, “Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 139, no.6, pp.1163–1177, 2009, doi: 10.1017/S0308210508000875.
A. Loiudice, “Semilinear subelliptic problems with critical growth on Carnot groups,” Manuscripta Math., vol. 124, no. 2, pp. 247–259, 2007, doi: 10.1007/s00229-007-0119-x.
A. Loiudice, “Critical growth problems with singular nonlinearities on Carnot groups,” Non-linear Anal., vol. 126, pp. 415–436, 2015, doi: 10.1016/j.na.2015.06.010.
A. Loiudice, “Local behavior of solutions to subelliptic problems with Hardy potential on Carnot groups,” Mediterr. J. Math., vol. 15, no. 3, 2018, Art ID 81, doi: 10.1007/s00009-018-1126-8.
M. Ruzhansky and D. Suragan, Hardy inequalities on homogeneous groups, ser. Progress in Mathematics. Birkhäuser/Springer, Cham, 2019, vol. 327, doi: 10.1007/978-3-030-02895-4.
M. Ruzhansky, N. Tokmagambetov, and N. Yessirkegenov, “Best constants in Sobolev and Gagliardo-Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations,” Calc. Var. Partial Differential Equations, vol. 59, no. 5, 2020, Art. ID 175, doi: 10.1007/s00526-020-01835-0.
G. Tarantello, “On nonhomogeneous elliptic equations involving critical Sobolev exponent,” Ann. Inst. H. Poincaré C Anal. Non Linéaire, vol. 9, no. 3, pp. 281–304, 1992, doi: 10.1016/S0294-1449(16)30238-4.
D. Vassilev, “Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups,” Pacific J. Math., vol. 227, no. 2, pp. 361–397, 2006, doi: 10.2140/pjm.2006.227.361.
M. Willem, Minimax theorems, ser. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996, vol. 24, doi: 10.1007/978-1-4612-4146-1.
T.-F. Wu, “On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,” J. Math. Anal. Appl., vol. 318, no. 1, pp. 253–270, 2006, doi: 10.1016/j.jmaa.2005.05.057.
J. Zhang, “Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups,” Manuscripta Math., vol. 172, no. 1-2, pp. 1–29, 2023, doi: 10.1007/s00229-022-01406-x.
J. Zhang and T.-S. Hsu, “Nonlocal elliptic systems involving critical Sobolev-Hardy exponents and concave-convex nonlinearities,” Taiwanese J. Math., vol. 23, no. 6, pp. 1479–1510, 2019, doi: 10.11650/tjm/190109.
Similar Articles
- Hubert Przybycień, A note on Krein-Milman theorem , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Bernard Helffer, Xing-Bin Pan, On Some Spectral Problems and Asymptotic Limits Occuring in the Analysis of Liquid Crystals , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ravi P. Agarwal, Michael E. Filippakis, Donal O‘Regan, Nikolaos S. Papageorgiou, Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- H. O. Fattorini, Regular and Strongly Regular Time and Norm Optimal Controls , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. Echarghaoui et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










