Convergence conditions for the secant method
-
Ioannis K. Argyros
iargyros@cameron.edu
-
Saïd Hilout
iargyros@cameron.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100014Abstract
We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz–type and center–Lipschitz–type instead of just Lipschitz–type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study.
Keywords
Most read articles by the same author(s)
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
Similar Articles
- Hernán Henríquez M., Comportamiento Asintotico de Semigrupos , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Lolimar Diaz, Raúl Naulin, Discrete Systems with Advanced Argument , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- John Ryan, Basic Clifford Analysis , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Jonas Gomes, Luiz Velho, Color representation: Theory and Techniques , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Radu Miron, Lagrange and Hamilton Spaces: Geometrical Models in Mechanics, new Theoretical Physics, Variational Calculus and Optimal Control , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Heriberto Román, Arturo Flores, On the level-convergence and fuzzy integration , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Rodolfo Baeza, Resumen de Comunicaciones , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- S. Richard, R. Tiedra de Aldecoa, Commutator criteria for strong mixing II. More general and simpler , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
<< < 14 15 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.











