Dynamic Oligopolies and Intertemporal Demand Interaction
-
Carl Chiarella
carl.chiarella@uts.edu.au
-
Ferenc Szidarovszky
szidar@sie.arizona.edu
Downloads
Abstract
Dynamic oligopolies are examined with continuous time scales and under the assumption that the demand at each time period is affected by earlier demands and consumptions. After the mathematical model is introduced the local asymptotical stability of the equilibrium is examined, and then we will discuss how information delays alter the stability conditions. We will also investigate the occurrence of a Hopf bifurcation giving the possibility of the birth of limit cycles. Numerical examples will be shown to illustrate the theoretical results.
Keywords
Most read articles by the same author(s)
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Akio Matsumoto, Ferenc Szidarovszky, An Elementary Study of a Class of Dynamic Systems with Single Time Delay , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Jijun Zhao, The Dynamic Evolution of Industrial Clusters , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Jerome Yen, Ferenc Szidarovszky, Dynamic Negotiations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
Similar Articles
- Mohamed Bouaouid, Ahmed Kajouni, Khalid Hilal, Said Melliani, A class of nonlocal impulsive differential equations with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Tatyana A. Komleva, Andrej V. Plotnikov, Natalia V. Skripnik, Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Fabrice Jaillet, Xavier Vidaux, A note on Buell’s Theorem on length four Büchi sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Abdoul Aziz Kalifa Dianda, Khalil Ezzinbi, Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
You may also start an advanced similarity search for this article.