A Topological Characterization of the Beurling-Björck Space ð”–𜔠Using the Short-Time Fourier Transform
-
Hamed M. Obiedat
hobiedat@math.nmsu.edu
Downloads
Abstract
In this article, we will use a previously obtained topological characterization of the Beurling-Björck Space, to prove a topological characterization via the short-time Fourier transform. Our work builds on recent work by K. Gröchenig and G. Zimmermann.
Keywords
Most read articles by the same author(s)
- Josefina Alvarez, Hamed M. Obiedat, Characterizations of the Schwartz Space and the Beurling-Björck Space ð”–ω , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
Similar Articles
- Elena I. Kaikina, Leonardo Guardado-Zavala, Hector F. Ruiz-Paredes, S. Juarez Zirate, Korteweg-de Vries-Burgers equation on a segment , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Jerome Yen, Ferenc Szidarovszky, Dynamic Negotiations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Kazuo Nishimura, John Stachurski, Discrete Time Models in Economic Theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2006-08-01
How to Cite
[1]
H. M. Obiedat, “A Topological Characterization of the Beurling-Björck Space ð”–𜔠Using the Short-Time Fourier Transform”, CUBO, vol. 8, no. 2, pp. 33–45, Aug. 2006.
Issue
Section
Articles