Wave propagation through a gap in a thin vertical wall in deep water
-
B. C. Das
findbablu10@gmail.com
-
Soumen De
sdeappmath@caluniv.ac.in
-
B. N. Mandal
bnm2006@rediffmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000300093Abstract
The problem of oblique scattering of surface water waves by a vertical wall with a gap submerged in infinitely deep water is re-investigated in this paper. It is formulated in terms of two first kind integral equations, one involving the difference of potential across the wetted part of the wall and the other involving the horizontal component of velocity across the gap. The integral equations are solved approximately using one-term Galerkin approximations involving constants multiplied by appropriate weight functions whose forms are dictated by the physics of the problem. This is in contrast with somewhat complicated but known solutions of corresponding deep water integral equations for the case of normal incidence, used earlier in the literature as one-term Galerkin approximation. Ultimately this leads to very closed (numerically) upper and lower bounds of the reflection and transmission coefficients so that their averages produce fairly accurate numerical estimates for these coefficients. Known numerical results for normal incidence and for a narrow gap obtained by other methods in the literature are recovered, thereby confirming the correctness of the method employed here.
Keywords
[2] P. Das, S. Banerjea, B. N. Mandal, Scattering of oblique waves by a thin vertical wall with a submerged gap, Arch. Mech.,, 48 (1996), 959-972.
[3] W. R. Dean, On the reflection of surface waves by a submerged plane barrier, Proc. Camb. Phil. Soc., 41 (1945), 231-238.
[4] D. V. Evans, C.A.N. Morris, The effect of a fixed vertical barrier on oblique incidence surface waves in deep water, J. Inst. Math. Applic., 9 (1972), 198-204.
[5] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, London, Academic press, 1980.
[6] T. H. Havelock, Forced surface waves on water, Phil. Mag., 8 (1929), 569-576.
[7] B. N. Mandal, A note on the diffraction of water waves by a vertical wall with a narrow gap, Arch. Mech., 39 (1987), 269-273.
[8] B. N. Mandal, A. Chakrabarti, Water wave scattering by barrier, WIT Press, Southampton, UK, 2000.
[9] B. A. Packham, W. E. Williams, A note on the transmission of water waves through small apertures, J. Math. Anal. Appl., 10 (1972), 176-184.
[10] D. Porter, The transmission of surface waves through a gap in a vertical barrier, Proc. Camb. Phil. Soc., 71 (1972), 411-421.
[11] R. Roy, U. Basu, B. N. Mandal, Water wave scattering by a pair of thin vertical barriers with submerged gaps, J. Eng. Math., 105 (2017), 85-97.
[12] E. O. Tuck, Transmission of water waves through small apertures, J. Fluid Mech., 49 (1971), 65-74.
Most read articles by the same author(s)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- B. N. Mandal, Mridula Kanoria, Water Waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
Similar Articles
- Manuel Pinto, Nonlinear Impulsive Differential Systems , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Gabriel N. Gatica, Algunos Aspectos Básicos del Método de Elementos Finitos , CUBO, A Mathematical Journal: Vol. 1 No. 1 (1999): CUBO, Matemática Educacional
- Heriberto Román, Arturo Flores, On the level-convergence and fuzzy integration , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
<< < 14 15 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.











