Results on para-Sasakian manifold admitting a quarter symmetric metric connection
-
Vishnuvardhana S.V.
svvishnuvardhana@gmail.com
-
Venkatesha
vensmath@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000200257Abstract
In this paper we have studied pseudosymmetric, Ricci-pseudosymmetric and projectively pseudosymmetric para-Sasakian manifold admitting a quarter-symmetric metric connection and constructed examples of 3-dimensional and 5-dimensional para-Sasakian manifold admitting a quarter-symmetric metric connection to verify our results.
Keywords
Abul Kalam Mondal and U.C. De, Quarter-symmetric nonmetric Connection on P-Sasakian manifolds, ISRN Geometry, (2012), 1–14.
G. Soos, Ìber die geodätischen Abbildungen von Riemannaschen Räumen auf projektiv-symmetrische Riemannsche Ra ̈ume, Acta. Math. Acad. Sci. Hungar., 9, (1958), 359–361.
A. Barman, Concircular curvature tensor on a P-Sasakian manifold admitting a quarter-symmetric metric connection, Kragujevac J. Math. 42 (2018), 2, 275–285.
D. V. Alekseevsky et al., Cones over pseudo-Riemannian manifolds and their holonomy, J. Reine Angew. Math. 635 (2009), 23–69.
E. Cartan, Surune classe remarquable d‘espaces de Riema, Soc. Math., France, 54 (1926), 214–264.
Cihan Ozgur, On A class of para-Sakakian manifolds, Turk J Math., 29 (2005), 249–257.
V. Cortés et al., Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys., 03, (2004), 1–64.
V. Cortés, M.-A. Lawn and L. Schäfer, Affine hyperspheres associated to special para-Kähler manifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), 5-6, 995–1009.
R. Deszcz, On pseudosymmetric spaces, Acta Math., Hungarica, 53 (1992), 185–190.
R. Deszcz and S. Yaprak, Curvature properties of certain pseudosymmetric manifolds, Publ. Math. Debrecen 45 (1994), 3-4, 333–345.
R. Deszcz et al., On some curvature conditions of pseudosymmetry type, Period. Math. Hungar. 70 (2015), 2, 153–170.
S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), 3, 249–254.
S. Haesen and L. Verstraelen, Properties of a scalar curvature invariant depending on two planes, Manuscripta Math. 122 (2007), 1, 59–72.
S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173–187.
Lata Bisht and Sandhana Shanker, Curvature tensor on para-Sasakian manifold admitting quarter symmetric metric connection, IOSR Journal of Mathematics, 11(5), (2015), 22–28.
K. Mandal and U. C. De, Quarter-symmetric metric connection in a P-Sasakian manifold, An. Univ. Vest Timi ̧s. Ser. Mat.-Inform. 53 (2015), 1, 137–150.
K.T. Pradeep Kumar, Venkatesha and C.S. Bagewadi, On φ-recurrent para-Sasakian manifold admitting quarter-symmetric metric connection, ISRN Geometry, (2012), 1-10.
I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), 3, 219–224.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version, J. Differential Geometry 17 (1982), 4, 531–582.
Most read articles by the same author(s)
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Venkatesha, Divyashree G., Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
Similar Articles
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Shing So, Recent Developments in Taxicab Geometry , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Sunil Kumar Yadav, Abhishek Kushwaha, Dhruwa Narain, Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.