Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations

Downloads

DOI:

https://doi.org/10.4067/S0719-06462021000100145

Abstract

In this work, we present some results on the existence of attractive solutions of fractional differential equations of the \(\psi\)-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive.

Keywords

\(\psi\)-Hilfer fractional derivate , Schauder fixed-point Theorem , uniformly locally attractive
  • Fatima Si bachir Laboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000, Algeria.
  • Saïd Abbas Department of Mathematics, University of Saïda–Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria.
  • Maamar Benbachir Department of Mathematics, Saad Dahlab Blida1, University of Blida, Algeria.
  • Mouffak Benchohra Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria.
  • Gaston M. N‘Guérékata NEERLab, Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore M.D. 21252, USA.
  • Pages: 145–159
  • Date Published: 2021-04-14
  • Vol. 23 No. 1 (2021)

S. Abbas, and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Dev. Math., vol. 39, Springer, Cham, 2015.

S. Abbas, and M. Benchohra, “Existence and stability of nonlinear fractional order Riemann- Liouville, Volterra-Stieltjes multi-delay integral equations”, J. Integ. Equat. Appl., vol. 25, pp. 143–158, 2013.

S. Abbas, M. Benchohra, and T. Diagana, “Existence and attractivity results for some fractional order partial integrodifferential equations with delay”, Afr. Diaspora J. Math., vol. 15, pp 87–100, 2013.

S. Abbas, M. Benchohra, and J. Henderson, “Existence and attractivity results for Hilfer fractional differential equations”, J. Math. Sci., vol. 243, 347–357, 2019.

S. Abbas, M. Benchohra, and G. M. N‘Guérékata, Advanced Fractional Differential and Integral Equations, Nova Sci. Publ., New York, 2015.

S. Abbas, M. Benchohra, and G. M. N‘Guérékata, Topics in Fractional Differential Equations, Dev. Math., vol. 27, Springer, New York, 2015.

S. Abbas, M. Benchohra, and J. J. Nieto, “Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations”, Electron. J. Qual. Theory Differ. Equat, vol. 81, pp. 1–15, 2012.

R. Almeida, “Functional differential equations involving the [psi]-Caputo fractional derivative”, Fractal and Fractional, vol. 4, no. 2, pp 1–8, 2020.

B. Ahmad, S. K. Ntouyas, and J. Tariboon, “A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations”, Acta Math. Sci. vol. 36, pp. 1631–1640, 2016.

R. Almeida, “A Caputo, fractional derivative of a function with respect to another function”, Comm. Nonlinear Sci. Numer. Simulat. vol. 44, pp. 460–481, 2017.

C. Corduneanu, Integral Equations and Stability of Feedback Systems, Acad. Press, New York, 1973.

B. C. Dhage, and V. Lakshmikantham, “Basic results on hybrid differential equations”, Nonlinear Anal.: Hybrid Systems vol. 4, pp. 414-424, 2010.

K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer–verlag Berlin Heidelberg, 2010.

S. Ferraoun, and Z. Dahmani, “Existence and stability of solutions of a class of hybrid fractional differential equations involving R-L-operator”, J. Interd. Math., pp. 1–19, 2020.

A. Granas , J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

J. P. Kharade and K. D. Kucche, “On the impulsive implicit ψ -Hilfer fractional differential equations with delay”, Math. Methods Appl. Sci., vol. 43, no 4, pp. 1938–1952, 2019.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math Stud., 204, Elsevier, Amsterdam, 2006.

K. D. Kucche, A. D. Mali, and J. V Sousa, “On the nonlinear Ψ-Hilfer fractional differential equations”. Comput. Appl. Math., vol. 38, no. 2, paper no. 73, 25 pp, 2019.

V. Lakshmikantham, and J. Vasundhara Devi, “Theory of fractional differential equations in a Banach space”, Eur. J. Pure Appl. Math. vol. 1, pp. 38–45, 2008.

V. Lakshmikantham, and A. S. Vatsala, “Basic theory of fractional differential equations”, Nonlin. Anal., vol. 69, pp. 2677-2682, 2008.

V. Lakshmikantham, and A. S. Vatsala, “General uniqueness and monotone iterative tech- nique for fractional differential equations”, Appl. Math. Lett., vol. 21, pp. 828–834, 2008.

K. Oldham, and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Acad. Press, 1999.

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach, Tokyo-Paris-Berlin, 1993.

H. Sugumarana, R. W. Ibrahimb, and K. Kanagarajana, “On ψ−Hilfer fractional differential equation with complex order”, Universal J. Math. Appl., vol. 1, no. 1, pp. 33–38, 2018.

S. Sun, Y. Zhao, Z. Han, and Y. Li, “The existence of solutions for boundary value problem of fractional hybrid differential equations”, Commun. Nonlinear Sci. Numer. Simulat., vol. 17, pp. 4961–4967, 2012.

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to the Dynamics of Particles, Fields, and Media, Springer, Beijing-Heidelberg, 2010.

J. Vanterler da C. Sousa, J. A. Tenreiro Machado, and E. Capelas de Oliveira, “The ψ−Hilfer fractional calculus of variable order and its applications”, Comput. Appl. Math., vol. 39, no. 296, pp. 1–38, 2020.

J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simulat., vol. 60, pp. 72–91, 2018.

J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the -fractional integral and applications”, Comput. Appl. Math., vol. 38, no. 4, pp. 1–22, 2019.

Y. Zhao, S. Sun, Z. Han, and Q. Li, “Theory of fractional hybrid differential equations”, Comput. Math. Appl., vol. 62, pp. 1312–1324, 2011.

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, Acad. Press, 2016.

Y. Zhou, J. Wang, and L. Zhang, Basic Theory of Fractional Differential Equations, Second Edition, World Scientific, Singapore, 2017.

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2021-04-14

How to Cite

[1]
F. Si bachir, S. . Abbas, M. Benbachir, M. Benchohra, and G. M. N‘Guérékata, “Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations”, CUBO, vol. 23, no. 1, pp. 145–159, Apr. 2021.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.