Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations
- Fatima Si bachir sibachir.fatima@univ-ghardaia.dz.com
- Saïd Abbas said.abbas@univ-saida.dz
- Maamar Benbachir mbenbachir2001@gmail.com
- Mouffak Benchohra benchohra@yahoo.com
- Gaston M. N‘Guérékata gaston.nguerekata@morgan.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000100145Abstract
In this work, we present some results on the existence of attractive solutions of fractional differential equations of the \(\psi\)-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive.
Keywords
S. Abbas, and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Dev. Math., vol. 39, Springer, Cham, 2015.
S. Abbas, and M. Benchohra, “Existence and stability of nonlinear fractional order Riemann- Liouville, Volterra-Stieltjes multi-delay integral equations”, J. Integ. Equat. Appl., vol. 25, pp. 143–158, 2013.
S. Abbas, M. Benchohra, and T. Diagana, “Existence and attractivity results for some fractional order partial integrodifferential equations with delay”, Afr. Diaspora J. Math., vol. 15, pp 87–100, 2013.
S. Abbas, M. Benchohra, and J. Henderson, “Existence and attractivity results for Hilfer fractional differential equations”, J. Math. Sci., vol. 243, 347–357, 2019.
S. Abbas, M. Benchohra, and G. M. N‘Guérékata, Advanced Fractional Differential and Integral Equations, Nova Sci. Publ., New York, 2015.
S. Abbas, M. Benchohra, and G. M. N‘Guérékata, Topics in Fractional Differential Equations, Dev. Math., vol. 27, Springer, New York, 2015.
S. Abbas, M. Benchohra, and J. J. Nieto, “Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations”, Electron. J. Qual. Theory Differ. Equat, vol. 81, pp. 1–15, 2012.
R. Almeida, “Functional differential equations involving the [psi]-Caputo fractional derivative”, Fractal and Fractional, vol. 4, no. 2, pp 1–8, 2020.
B. Ahmad, S. K. Ntouyas, and J. Tariboon, “A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations”, Acta Math. Sci. vol. 36, pp. 1631–1640, 2016.
R. Almeida, “A Caputo, fractional derivative of a function with respect to another function”, Comm. Nonlinear Sci. Numer. Simulat. vol. 44, pp. 460–481, 2017.
C. Corduneanu, Integral Equations and Stability of Feedback Systems, Acad. Press, New York, 1973.
B. C. Dhage, and V. Lakshmikantham, “Basic results on hybrid differential equations”, Nonlinear Anal.: Hybrid Systems vol. 4, pp. 414-424, 2010.
K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer–verlag Berlin Heidelberg, 2010.
S. Ferraoun, and Z. Dahmani, “Existence and stability of solutions of a class of hybrid fractional differential equations involving R-L-operator”, J. Interd. Math., pp. 1–19, 2020.
A. Granas , J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
J. P. Kharade and K. D. Kucche, “On the impulsive implicit ψ -Hilfer fractional differential equations with delay”, Math. Methods Appl. Sci., vol. 43, no 4, pp. 1938–1952, 2019.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math Stud., 204, Elsevier, Amsterdam, 2006.
K. D. Kucche, A. D. Mali, and J. V Sousa, “On the nonlinear Ψ-Hilfer fractional differential equations”. Comput. Appl. Math., vol. 38, no. 2, paper no. 73, 25 pp, 2019.
V. Lakshmikantham, and J. Vasundhara Devi, “Theory of fractional differential equations in a Banach space”, Eur. J. Pure Appl. Math. vol. 1, pp. 38–45, 2008.
V. Lakshmikantham, and A. S. Vatsala, “Basic theory of fractional differential equations”, Nonlin. Anal., vol. 69, pp. 2677-2682, 2008.
V. Lakshmikantham, and A. S. Vatsala, “General uniqueness and monotone iterative tech- nique for fractional differential equations”, Appl. Math. Lett., vol. 21, pp. 828–834, 2008.
K. Oldham, and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Acad. Press, 1999.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach, Tokyo-Paris-Berlin, 1993.
H. Sugumarana, R. W. Ibrahimb, and K. Kanagarajana, “On ψ−Hilfer fractional differential equation with complex order”, Universal J. Math. Appl., vol. 1, no. 1, pp. 33–38, 2018.
S. Sun, Y. Zhao, Z. Han, and Y. Li, “The existence of solutions for boundary value problem of fractional hybrid differential equations”, Commun. Nonlinear Sci. Numer. Simulat., vol. 17, pp. 4961–4967, 2012.
V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to the Dynamics of Particles, Fields, and Media, Springer, Beijing-Heidelberg, 2010.
J. Vanterler da C. Sousa, J. A. Tenreiro Machado, and E. Capelas de Oliveira, “The ψ−Hilfer fractional calculus of variable order and its applications”, Comput. Appl. Math., vol. 39, no. 296, pp. 1–38, 2020.
J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simulat., vol. 60, pp. 72–91, 2018.
J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the -fractional integral and applications”, Comput. Appl. Math., vol. 38, no. 4, pp. 1–22, 2019.
Y. Zhao, S. Sun, Z. Han, and Q. Li, “Theory of fractional hybrid differential equations”, Comput. Math. Appl., vol. 62, pp. 1312–1324, 2011.
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, Acad. Press, 2016.
Y. Zhou, J. Wang, and L. Zhang, Basic Theory of Fractional Differential Equations, Second Edition, World Scientific, Singapore, 2017.
Most read articles by the same author(s)
- Khalida Aissani, Mouffak Benchohra, Nadia Benkhettou, On Fractional Integro-differential Equations with State-Dependent Delay and Non-Instantaneous Impulses , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Peng Chen, Hui-Sheng Ding, Gaston M. N‘Guérékata, Positive asymptotically almost periodic solutions of an impulsive hematopoiesis model , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Mouffak Benchohra, Fatima-Zohra Mostefai, Weak Solutions of Fractional Order Pettis Integral Inclusions with Multiple Time Delay in Banach Spaces , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
Similar Articles
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Daciberg L. Gonçalves, Nielsen Fixed Point Theory , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Juan A. Gatica, Fixed Point Theorems with Applications to Differential Equations , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Rafael Galeano, Pedro Ortega, John Cantillo, Stationary Boltzmann equation and the nonlinear alternative of Leray-Schauder type , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Smaïl Djebali, Ouiza Saifi, Upper and lower solutions for φ−Laplacian third-order BVPs on the half-Line , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: In Press
- M. H. Saleh, S. M. Amer, M. A. Mohamed, N. S. Abdelrhman, Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.