Extension of exton's hypergeometric function \(K_{16}\)
-
Ahmed Ali Atash
ah-a-atash@hotmail.com
-
Maisoon Ahmed Kulib
maisoonahmedkulib@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300489Abstract
The purpose of this article is to introduce an extension of Exton's hypergeometric function \(K_{16}\) by using the extended beta function given by Özergin et al. [11]. Some integral representations, generating functions, recurrence relations, transformation formulas, derivative formula and summation formulas are obtained for this extended function. Some special cases of the main results of this paper are also considered.
Keywords
P. Agarwal, J. Choi and S. Jain, “Extended hypergeometric functions of two and three variables”, Commun. Korean Math. Soc., vol. 30, no. 4, pp. 403–414, 2015.
R. P. Agarwal, M. J. Luo and P. Agarwal, “On the extended Appell-Lauricella hypergeometric functions and their applications”, Filomat, vol. 31, no. 12, pp. 3693–3713, 2017.
A. Çetinkaya, I. O. Kıymaz, P. Agarwal and R. Agarwal, “A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators”, Adv. Difference Equ., vol. 2018, paper no. 156, pp. 1–11, 2018.
R. C. Singh Chandel and A. Tiwari, “Generating relations involving hypergeometric functions of four variables”, Pure Appl. Math. Sci., vol. 36, no. 1-2, pp. 15–25, 1991.
M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, “Extension of Euler‘s beta function”, J. Comp. Appl. Math., vol. 78, no. 1, pp. 19–32, 1997.
M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, “Extended hypergeometric and confluent hypergeometric functions”, Appl. Math. Comp., vol. 159, no. 2, pp. 589–602, 2004.
H. Exton, Multiple hypergeometric functions and applications, New York: Halsted Press, 1976.
H. Liu, “Some generating relations for extended Appell‘s and Lauricella‘s hypergeometric functions”, Rocky Mountain J. Math., vol. 44, no. 6, pp. 1987–2007, 2014.
Y. L. Luke, The special functions and their approximations, New York: Academic Press, 1969.
M. A. Özarslan and E. Özergin, “Some generating relations for extended hypergeometric functions via generalized fractional derivative operator”, Math. Comput. Modelling, vol. 52, no. 9-10, pp. 1825–1833, 2010.
E. Özergin, M. A. Özarslan, and A. Altin, “Extension of gamma, beta and hypergeometric functions”, J. Comp. Appl. Math., vol. 235, no. 16, pp. 4601–4610, 2011.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric Series, New York: Halsted Press, 1985.
H. M. Srivastava and H. L. Manocha, A treatise on generating functions, New York: Halsted Press, 1984.
X. Wang, “Recursion formulas for Appell functions”, Integral Transforms Spec. Funct., vol. 23, no. 6, pp. 421–433, 2012.
Similar Articles
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Boukhemis Ammar, On the classical 2−orthogonal polynomials sequences of Sheffer-Meixner type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











