Extension of exton's hypergeometric function \(K_{16}\)
-
Ahmed Ali Atash
ah-a-atash@hotmail.com
-
Maisoon Ahmed Kulib
maisoonahmedkulib@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300489Abstract
The purpose of this article is to introduce an extension of Exton's hypergeometric function \(K_{16}\) by using the extended beta function given by Özergin et al. [11]. Some integral representations, generating functions, recurrence relations, transformation formulas, derivative formula and summation formulas are obtained for this extended function. Some special cases of the main results of this paper are also considered.
Keywords
P. Agarwal, J. Choi and S. Jain, “Extended hypergeometric functions of two and three variables”, Commun. Korean Math. Soc., vol. 30, no. 4, pp. 403–414, 2015.
R. P. Agarwal, M. J. Luo and P. Agarwal, “On the extended Appell-Lauricella hypergeometric functions and their applications”, Filomat, vol. 31, no. 12, pp. 3693–3713, 2017.
A. Çetinkaya, I. O. Kıymaz, P. Agarwal and R. Agarwal, “A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators”, Adv. Difference Equ., vol. 2018, paper no. 156, pp. 1–11, 2018.
R. C. Singh Chandel and A. Tiwari, “Generating relations involving hypergeometric functions of four variables”, Pure Appl. Math. Sci., vol. 36, no. 1-2, pp. 15–25, 1991.
M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, “Extension of Euler‘s beta function”, J. Comp. Appl. Math., vol. 78, no. 1, pp. 19–32, 1997.
M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, “Extended hypergeometric and confluent hypergeometric functions”, Appl. Math. Comp., vol. 159, no. 2, pp. 589–602, 2004.
H. Exton, Multiple hypergeometric functions and applications, New York: Halsted Press, 1976.
H. Liu, “Some generating relations for extended Appell‘s and Lauricella‘s hypergeometric functions”, Rocky Mountain J. Math., vol. 44, no. 6, pp. 1987–2007, 2014.
Y. L. Luke, The special functions and their approximations, New York: Academic Press, 1969.
M. A. Özarslan and E. Özergin, “Some generating relations for extended hypergeometric functions via generalized fractional derivative operator”, Math. Comput. Modelling, vol. 52, no. 9-10, pp. 1825–1833, 2010.
E. Özergin, M. A. Özarslan, and A. Altin, “Extension of gamma, beta and hypergeometric functions”, J. Comp. Appl. Math., vol. 235, no. 16, pp. 4601–4610, 2011.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric Series, New York: Halsted Press, 1985.
H. M. Srivastava and H. L. Manocha, A treatise on generating functions, New York: Halsted Press, 1984.
X. Wang, “Recursion formulas for Appell functions”, Integral Transforms Spec. Funct., vol. 23, no. 6, pp. 421–433, 2012.
Similar Articles
- K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- V. Seenivasan, G. Balasubramanian, G. Thangaraj, Somewhat Fuzzy Semi ð›¼-Irresolute Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Xiaoling Liu, Dehui Yuan, Shengyun Yang, Guoming Lai, Chuanqing Xu, Multiple objective programming involving differentiable (ð›¨áµ¨, ð˜³)-invex functions , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Sirkka-Liisa Eriksson, Heikki Orelma, A simple construction of a fundamental solution for the extended Weinstein equation , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- H. Özlem Güney, G. Murugusundaramoorthy, K. Vijaya, Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











